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Chapter 1. Graphical Tools for Describing One Variable at a Time 
Variables1 
Variables are properties or characteristics of some event, object, or person that can take on different 
values or amounts (as opposed to constants such as π that do not vary). When conducting research, 
experimenters often manipulate or measure variables. For example, an experimenter might compare 
the effectiveness of four types of antidepressants. In this case, the variable is "type of antidepressant." 
This experimenter might also ask study participants to indicate their mood on a scale of 1 to 10. “Mood” 
would be a second variable. 

Qualitative and Quantitative Variables 
An important distinction between variables is between qualitative variables and quantitative variables. 
Qualitative variables are those that express a qualitative attribute such as hair color, eye color, religion, 
favorite movie, gender, and so on. The values of a qualitative variable do not imply a numerical ordering. 
Values of the variable “religion” differ qualitatively; no ordering of religions is implied. Qualitative 
variables are also sometimes referred to as categorical or nominal variables. Quantitative variables are 
those variables that are measured in terms of numbers. Some examples of quantitative variables are 
height, weight, and shoe size. 

Example: Can blueberries slow down aging? A study indicates that antioxidants found in 
blueberries may slow down the process of aging. In this study, 19-month-old rats (equivalent 
to 60-year-old humans) were fed either their standard diet or a diet supplemented by either 
blueberry, strawberry, or spinach powder. After eight weeks, the rats were given memory and 
motor skills tests. Although all supplemented rats showed improvement, those supplemented 
with blueberry powder showed the most notable improvement. 

More information: https://www.apa.org/monitor/dec01/blueberries.html 

In the study on the effect of diet discussed above, the independent variable was type of supplement: 
none, strawberry, blueberry, and spinach. The variable "type of supplement" is a qualitative variable; 
there is nothing quantitative about it. In contrast, the dependent variable "memory test" is a 
quantitative variable since memory performance was measured on a quantitative scale (number 
correct). 

Discrete and Continuous Variables 
Variables such as number of children in a household are called discrete variables since the possible 
scores are discrete points on the scale. For example, a household could have three children or six 
children, but not 4.53 children. Other variables such as "time to respond to a question" are continuous 
variables since the scale is continuous and not made up of discrete steps. The response time could be 
1.64 seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of measurement 
preclude most measured variables from being truly continuous. 

 
1 This section is adapted from Heidi Ziemer. “Variables.” Online Statistics Education: A Multimedia Course of Study. 
http://onlinestatbook.com/2/introduction/variables.html 

https://www.apa.org/monitor/dec01/blueberries.html
http://onlinestatbook.com/2/introduction/variables.html
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Percentiles2 
We will turn our attention to some basic graphical tools we can use to visualize qualitative and 
quantitative variables in a moment, but first it is helpful to briefly go over percentiles since they will be 
used in some graphical tools. Many of us have probably encountered percentiles before in the context 
of standardized exam testing. A test score in and of itself is usually difficult to interpret. For example, if 
you learned that your score on a measure of shyness was 35 out of a possible 50, you would have little 
idea how shy you are compared to other people. More relevant is the percentage of people with lower 
shyness scores than yours. This percentage is called a percentile. If 65% of the scores were below yours, 
then your score would be the 65th percentile. 

Three Alternative Definitions of Percentile 
There is no universally accepted definition of a percentile. Using the 65th percentile as an example, the 
65th percentile can be defined as the lowest score that is greater than 65% of the scores. This is the way 
we defined it above and we will call this "Definition 1." The 65th percentile can also be defined as the 
smallest score that is greater than or equal to 65% of the scores. This we will call "Definition 2." Though 
these two definitions appear very similar, they can sometimes lead to dramatically different results, 
especially when there is relatively little data. Moreover, neither of these definitions is explicit about how 
to handle rounding. For instance, what rank is required to be higher than 65% of the scores when the 
total number of scores is 50? This is tricky because 65% of 50 is 32.5. How do we find the lowest number 
that is higher than 32.5 of the scores? 

A third way to compute percentiles is a weighted average of the percentiles computed according to the 
first two definitions. The details of computing percentiles under this third definition are a bit 
complicated, but fortunately, statistical software can easily do the calculations for us. Since it is unlikely 
you will need to compute percentiles by hand, we leave the details of these computations to the 
appendix appearing at the end of this chapter. Despite its complexity, the third definition handles 
rounding more gracefully than the other two and has the advantage that it allows the median to be 
defined conveniently as the 50th percentile. Unless otherwise specified, when we refer to "percentile," 
we will be referring to this third definition of percentiles. 

Graphing Qualitative Variables3 
When Apple Computer introduced the iMac computer in August 1998, the company wanted to learn 
whether the iMac was expanding Apple’s market share. Was the iMac just attracting previous Macintosh 
owners? Or was it purchased by newcomers to the computer market and by previous Windows users 
who were switching over? To find out, 500 iMac customers were interviewed. Each customer was 
categorized as a previous Macintosh owner, a previous Windows owner, or a new computer purchaser.  

This section examines graphical methods for displaying the results of the interviews. We’ll learn some 
general lessons about how to graph data that fall into a small number of categories. A later section will 
consider how to graph numerical data in which each observation is represented by a number in some 
range. The key point about the qualitative data that occupy us in the present section is that they do not 

 
2 This section is adapted from David M. Lane. “Percentiles.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/introduction/percentiles.html 
3 This section is adapted from David M. Lane. “Graphing Qualitative Variables.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/graphing_distributions/graphing_qualitative.html 

http://onlinestatbook.com/2/introduction/percentiles.html
http://onlinestatbook.com/2/graphing_distributions/graphing_qualitative.html
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come with a pre-established ordering (the way numbers are ordered). For example, there is no natural 
sense in which the category of previous Windows users comes before or after the category of previous 
Macintosh users. This situation may be contrasted with quantitative data, such as a person’s weight. 
People of one weight are naturally ordered with respect to people of a different weight. 

Frequency Tables 
All of the graphical methods shown in this section are derived from frequency tables. Table 1-1 shows a 
frequency table for the results of the iMac study; it shows the frequencies of the various response 
categories. It also shows the relative frequencies, which are the proportion of responses in each 
category. For example, the relative frequency for "none" is 85/500 = 0.17. 

Table 1-1. Frequency Table for the iMac Data.  

Previous Ownership Frequency Relative Frequency 

None 85 0.17 

Windows 60 0.12 

Macintosh 355 0.71 

Total 500 1.00 

 

Pie Charts 
The pie chart in Figure 1-1 shows the results of the iMac study. In a pie chart, each category is 
represented by a slice of the pie. The area of the slice is proportional to the percentage of responses in 
the category. This is simply the relative frequency multiplied by 100. Although most iMac purchasers 
were Macintosh owners, Apple was encouraged by the 12% of purchasers who were former Windows 
users, and by the 17% of purchasers who were buying a computer for the first time. 

 

Figure 1-1. Pie chart of iMac purchases illustrating frequencies of previous computer ownership.  
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Pie charts are effective for displaying the relative frequencies of a small number of categories. They are 
not recommended, however, when you have a large number of categories. Pie charts can also be 
confusing when they are used to compare the outcomes of two different surveys or experiments. In an 
influential book on the use of graphs, Edward Tufte asserted, "The only worse design than a pie chart is 
several of them." 

Here is another important point about pie charts. If they are based on a small number of observations, it 
can be misleading to label the pie slices with percentages. For example, if just 5 people had been 
interviewed by Apple Computers, and 3 were former Windows users, it would be misleading to display a 
pie chart with the Windows slice showing 60%. With so few people interviewed, such a large percentage 
of Windows users might easily have occurred since chance can cause large errors with small samples. In 
this case, it is better to alert the user of the pie chart to the actual numbers involved. The slices should 
therefore be labeled with the actual frequencies observed (e.g., 3) instead of with percentages. 

Bar charts 
Bar charts can also be used to represent frequencies of different categories. A bar chart of the iMac 
purchases is shown in Figure 1-2. Frequencies are shown on the Y-axis and the type of computer 
previously owned is shown on the X-axis. Typically, the Y-axis shows the number of observations in each 
category rather than the percentage of observations as is typical in pie charts.  

 

Figure 1-2. Bar chart of iMac purchases as a function of previous computer ownership.  

Comparing Distributions 
Often we need to compare the results of different surveys, or of different conditions within the same 
overall survey. In this case, we are comparing the "distributions" of responses between the surveys or 
conditions. Bar charts are often excellent for illustrating differences between two distributions. Figure 1-
3 shows the number of people playing card games at the Yahoo website on a Sunday and on a 
Wednesday in the Spring of 2001. We see that there were more players overall on Wednesday 
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compared to Sunday. The number of people playing Pinochle was nonetheless the same on these two 
days. In contrast, there were about twice as many people playing hearts on Wednesday as on Sunday. 
Facts like these emerge clearly from a well-designed bar chart.  

 

Figure 1-3. A bar chart of the number of people playing different card games on Sunday and Wednesday.  

The bars in Figure 1-3 are oriented horizontally rather than vertically. The horizontal format is useful 
when you have many categories because there is more room for the category labels. We’ll have more to 
say about bar charts when we consider numerical quantities later in the section Bar Charts. 

Some graphical mistakes to avoid 
Don’t get fancy! People sometimes add features to graphs that don’t help to convey their information. 
For example, 3-dimensional bar charts such as the one shown in Figure 1-4 are usually not as effective as 
their two-dimensional counterparts. 
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Figure 1-4. A three-dimensional version of Figure 2.  

Here is another way that fanciness can lead to trouble. Instead of plain bars, it is tempting to substitute 
meaningful images. For example, Figure 1-5 presents the iMac data using pictures of computers. The 
heights of the pictures accurately represent the number of buyers, yet Figure 1-5 is misleading because 
the viewer's attention will be captured by areas. The areas can exaggerate the size differences between 
the groups. In terms of percentages, the ratio of previous Macintosh owners to previous Windows 
owners is about 6 to 1. But the ratio of the two areas in Figure 1-5 is about 35 to 1. A biased person 
wishing to hide the fact that many Windows owners purchased iMacs would be tempted to use Figure 1-
5 instead of Figure 1-2! Edward Tufte coined the term "lie factor" to refer to the ratio of the size of the 
effect shown in a graph to the size of the effect shown in the data. He suggests that lie factors greater 
than 1.05 or less than 0.95 produce unacceptable distortion.  
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Figure 1-5. A redrawing of Figure 1-2 with a lie factor greater than 8.  

Another distortion in bar charts results from setting the baseline to a value other than zero. The baseline 
is the bottom of the Y-axis, representing the least number of cases that could have occurred in a 
category. Normally, but not always, this number should be zero. Figure 1-6 shows the iMac data with a 
baseline of 50. Once again, the differences in areas suggest a different story than the true differences in 
percentages. The percentage of Windows-switchers seems minuscule compared to its true value of 12%. 
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Figure 1-6. A redrawing of Figure 1-2 with a baseline of 50.  

Finally, we note that it is a serious mistake to use a line graph when the X-axis contains merely 
qualitative variables. A line graph is essentially a bar graph with the tops of the bars represented by 
points joined by lines (the rest of the bar is suppressed). Figure 1-7 inappropriately shows a line graph of 
the card game data from Yahoo. The drawback to Figure 1-7 is that it gives the false impression that the 
games are naturally ordered in a numerical way when, in fact, they are ordered alphabetically. 
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Figure 1-7. A line graph used inappropriately to depict the number of people playing different card 
games on Sunday and Wednesday. 

Having considered qualitative variables, we now turn our attention to some of the common types of 
graphs that are used to depict quantitative variables, beginning with histograms. 

Histograms4 
A histogram is a graphical method for displaying the shape of a distribution. It is particularly useful when 
there are a large number of observations. We begin with an example consisting of the scores of 642 
students on a psychology test. The test consists of 197 items, each graded as "correct" or "incorrect." 
The students' scores ranged from 46 to 167. 

The first step is to create a frequency table. Unfortunately, a simple frequency table would be too big, 
containing over 100 rows. To simplify the table, we group scores together as shown in Table 1-2.  

Table 1-2. Grouped Frequency Distribution of Psychology Test Scores  

Interval's Lower Limit Interval's Upper Limit Class Frequency 

39.5 49.5 3 

49.5 59.5 10 

59.5 69.5 53 

69.5 79.5 107 

79.5 89.5 147 

 
4 This section is adapted from David M. Lane. “Histograms.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/graphing_distributions/histograms.html 

http://onlinestatbook.com/2/graphing_distributions/histograms.html
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89.5 99.5 130 

99.5 109.5 78 

109.5 119.5 59 

119.5 129.5 36 

129.5 139.5 11 

139.5 149.5 6 

149.5 159.5 1 

159.5 169.5 1 

  

To create this table, the range of scores was broken into intervals, called class intervals. The first interval 
is from 39.5 to 49.5, the second from 49.5 to 59.5, etc. Next, the number of scores falling into each 
interval was counted to obtain the class frequencies. There are three scores in the first interval, 10 in the 
second, etc.  

Class intervals of width 10 provide enough detail about the distribution to be revealing without making 
the graph too "choppy." More information on choosing the widths of class intervals is presented later in 
this section. Placing the limits of the class intervals midway between two numbers (e.g., 49.5) ensures 
that every score will fall in an interval rather than on the boundary between intervals. 

In a histogram, the class frequencies are represented by bars. The height of each bar corresponds to its 
class frequency. A histogram of these data is shown in Figure 1-8. 

 

Figure 1-8. Histogram of scores on a psychology test.  

The histogram makes it plain that most of the scores are in the middle of the distribution, with fewer 
scores in the extremes. You can also see that the distribution is not symmetric: the scores extend to the 
right farther than they do to the left. The distribution is therefore said to be skewed. 
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In our example, the observations are whole numbers. Histograms can also be used when the scores are 
measured on a more continuous scale such as the length of time (in milliseconds) required to perform a 
task. In this case, there is no need to worry about fence-sitters since they are improbable. (It would be 
quite a coincidence for a task to require exactly 7 seconds, measured to the nearest thousandth of a 
second.) We are therefore free to choose whole numbers as boundaries for our class intervals, for 
example, 4000, 5000, etc. The class frequency is then the number of observations that are greater than 
or equal to the lower bound, and strictly less than the upper bound. For example, one interval might 
hold times from 4000 to 4999 milliseconds. Using whole numbers as boundaries avoids a cluttered 
appearance, and is the practice of many computer programs that create histograms. Note also that 
some computer programs label the middle of each interval rather than the end points. 

Histograms can be based on relative frequencies instead of actual frequencies. Histograms based on 
relative frequencies show the proportion of scores in each interval rather than the number of scores. In 
this case, the Y-axis runs from 0 to 1 (or somewhere in between if there are no extreme proportions). 
You can change a histogram based on frequencies to one based on relative frequencies by (a) dividing 
each class frequency by the total number of observations, and then (b) plotting the quotients on the Y-
axis (labeled as proportion). 

There is more to be said about the widths of the class intervals, sometimes called bin widths. Your 
choice of bin width determines the number of class intervals. This decision, along with the choice of 
starting point for the first interval, affects the shape of the histogram. There are some "rules of thumb" 
that can help you choose an appropriate width. (But keep in mind that none of the rules is perfect.) We 
prefer the Rice rule, which is to set the number of intervals to twice the cube root of the number of 
observations. In the case of 1000 observations, the Rice rule yields 20 intervals. For the psychology test 
example used above, the Rice rule recommends 17. The best advice is to experiment with different 
choices of width, and to choose a histogram according to how well it communicates the shape of the 
distribution. 

Box Plots5 
Box plots are useful for identifying outliers and for comparing distributions. We will explain box plots 
with the help of data from an in-class experiment. As part of the "Stroop Interference Case Study,"6 
students in introductory statistics were presented with a page containing 30 colored rectangles. Their 
task was to name the colors as quickly as possible. Their times (in seconds) were recorded. We'll 
compare the scores for the 16 men and 31 women who participated in the experiment by making 
separate box plots for each gender. Such a display is said to involve parallel box plots. 

There are several steps in constructing a box plot. The first relies on the 25th, 50th, and 75th percentiles in 
the distribution of scores. Figure 1-9 shows how these three statistics are used. For each gender, we 
draw a box extending from the 25th percentile to the 75th percentile. The 50th percentile is drawn inside 
the box. Therefore,  

the bottom of each box is the 25th percentile, 

 
5 This section is adapted from David M. Lane. “Box Plots.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/graphing_distributions/boxplots.html 
6 http://onlinestatbook.com/2/case_studies/stroop.html 

http://onlinestatbook.com/2/graphing_distributions/boxplots.html
http://onlinestatbook.com/2/case_studies/stroop.html
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the top is the 75th percentile, 

and the line in the middle is the 50th percentile. 

The data for the women in our sample are shown in Table 1-3.  

Table 1-3. Women's times. 

14 
15 
16 
16 
17 

17 
17 
17 
17 
18 

18 
18 
18 
18 
18 

19 
19 
19 
20 
20 

20 
20 
20 
20 
21 

21 
22 
23 
24 
24 

29 

 

For these data, the 25th percentile is 17, the 50th percentile is 19, and the 75th percentile is 20. For the 
men (whose data are not shown), the 25th percentile is 19, the 50th percentile is 22.5, and the 75th 
percentile is 25.5. 

 

Figure 1-9. The first step in creating box plots. 

Before proceeding, the terminology in Table 1-4 is helpful. 

Table 1-4. Box plot terms and values for women's times. 

Name Formula Value 
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Upper Hinge 75th Percentile 20 

Lower Hinge 25th Percentile 17 

H-Spread Upper Hinge - Lower Hinge 3 

Step 1.5 x H-Spread 4.5 

Upper Inner Fence Upper Hinge + 1 Step 24.5 

Lower Inner Fence Lower Hinge - 1 Step 12.5 

Upper Outer Fence Upper Hinge + 2 Steps 29 

Lower Outer Fence Lower Hinge - 2 Steps 8 

Upper Adjacent Largest value below Upper Inner Fence 24 

Lower Adjacent Smallest value above Lower Inner Fence 14 

Outside Value A value beyond an Inner Fence but not beyond an Outer Fence 29  

Far Out Value A value beyond an Outer Fence None 

 

Continuing with the box plots, we put "whiskers" above and below each box to give additional 
information about the spread of the data. Whiskers are vertical lines that end in a horizontal stroke. 
Whiskers are drawn from the upper and lower hinges to the upper and lower adjacent values (24 and 14 
for the women's data).  

 

Figure 1-10. The box plots with the whiskers drawn. 
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Although we don't draw whiskers all the way to outside or far out values, we still wish to represent them 
in our box plots. This is achieved by adding additional marks beyond the whiskers. Specifically, outside 
values are indicated by small "o's" and far out values are indicated by asterisks (*). In our data, there are 
no far out values and just one outside value. This outside value of 29 is for the women and is shown in 
Figure 1-11. 

 

Figure 1-11. The box plots with the outside value shown. 

There is one more mark to include in box plots (although sometimes it is omitted). We indicate the 
mean score for a group by inserting a plus sign. Figure 1-12 shows the result of adding means to our box 
plots. 
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Figure 1-12. The completed box plots. 

Figure 1-12 provides a revealing summary of the data. Since half the scores in a distribution are between 
the hinges (recall that the hinges are the 25th and 75th percentiles), we see that half the women's times 
are between 17 and 20 seconds, whereas half the men's times are between 19 and 25.5. We also see 
that women generally named the colors faster than the men did, although one woman was slower than 
almost all of the men. Figure 1-13 shows the box plot for the women's data with detailed labels.  
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Figure 1-13. The box plot for the women's data with detailed labels. 

Box plots provide basic information about a distribution. For example, a distribution with a positive skew 
would have a longer whisker in the positive direction than in the negative direction. A larger mean than 
median would also indicate a positive skew. Box plots are good at portraying extreme values and are 
especially good at showing differences between distributions. However, many of the details of a 
distribution are not revealed in a box plot, and to examine these details one should create a histogram.  

Variations on box plots 
Statistical analysis programs may offer options on how box plots are created. For example, the box plots 
in Figure 1-14 are constructed from our data but differ from the previous box plots in several ways. 

1. It does not mark outliers. 

2. The means are indicated by green lines rather than plus signs.  

3. The mean of all scores is indicated by a gray line. 

4. Individual scores are represented by dots. Since the scores have been rounded to the nearest 
second, any given dot might represent more than one score. 

5. The box for the women is wider than the box for the men because the widths of the boxes are 
proportional to the number of subjects of each gender (31 women and 16 men). 

 

Figure 1-14. Box plots showing the individual scores and the means. 

Each dot in Figure 1-14 represents a group of subjects with the same score (rounded to the nearest 
second). An alternative graphing technique is to “jitter” the points. This means spreading out different 
dots at the same horizontal position, one dot for each subject. The exact horizontal position of a dot is 
determined randomly (under the constraint that different dots don’t overlap exactly). Spreading out the 
dots helps you to see multiple occurrences of a given score. However, depending on the dot size and the 
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screen resolution, some points may be obscured even if the points are jittererd. Figure 1-15 shows what 
jittering looks like. 

 

Figure 1-15. Box plots with the individual scores jittered. 

Different styles of box plots are best for different situations, and there are no firm rules for which to use. 
When exploring your data, you should try several ways of visualizing them. Which graphs you include in 
your report should depend on how well different graphs reveal the aspects of the data you consider 
most important.  

Bar Charts7 
In the section on qualitative variables, we saw how bar charts could be used to illustrate the frequencies 
of different categories. For example, one bar chart showed how many purchasers of iMac computers 
were previous Macintosh users, previous Windows users, and new computer purchasers.  

In this section, we show how bar charts can be used to present other kinds of quantitative information, 
not just frequency counts. The bar chart in Figure 1-16 shows the percent increases in the Dow Jones, 
Standard and Poor 500 (S & P), and Nasdaq stock indexes from May 24th 2000 to May 24th 2001. Notice 
that both the S & P and the Nasdaq had “negative increases” which means that they decreased in value. 
In this bar chart, the Y-axis is not frequency but rather the signed quantity percentage increase. 

 
7 This section is adapted from David M. Lane. “Bar Charts.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/graphing_distributions/bar_chart.html 

http://onlinestatbook.com/2/graphing_distributions/bar_chart.html
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Figure 1-16. Percent increase in three stock indexes from May 24th 2000 to May 24th 2001. 

Bar charts are particularly effective for showing change over time. Figure 1-17, for example, shows the 
percent increase in the Consumer Price Index (CPI) over four three-month periods. The fluctuation in 
inflation is apparent in the graph. 

 

Figure 1-17. Percent change in the CPI over time. Each bar represents percent increase for the three 
months ending at the date indicated. 

Bar charts are often used to compare the means of different experimental conditions. Figure 1-18 shows 
the mean time it took one of us (DL) to move the mouse to either a small target or a large target. On 
average, more time was required for small targets than for large ones. 
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Figure 1-18. Bar chart showing the means for the two conditions. 

Although bar charts can display means, we do not recommend them for this purpose. Box plots should 
be used instead since they provide more information than bar charts without taking up more space. For 
example, a box plot of the mouse-movement data is shown in Figure 1-19. You can see that Figure 1-19 
reveals more about the distribution of movement times than does Figure 1-18. 

 

Figure 1-19. Box plots of times to move the mouse to the small and large targets. 

The section on qualitative variables presented earlier in this chapter discussed the use of bar charts for 
comparing distributions. Some common graphical mistakes were also noted. The earlier discussion 
applies equally well to the use of bar charts to display quantitative variables. 
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Chapter 1 Appendix: Calculating Percentiles Under the Third Definition8 
Let's begin with an example. Consider the 25th percentile for the 8 numbers in Table 1-5. Notice the 
numbers are given ranks ranging from 1 for the lowest number to 8 for the highest number. 

Table 1-5. Test Scores.  

Number Rank 

3 
5 
7 
8 
9 
11 
13 
15 

1 
2 
3 
4 
5 
6 
7 
8 

 

The first step is to compute the rank (R) of the 25th percentile. This is done using the following formula: 

R = P/100 x (N + 1) 

where P is the desired percentile (25 in this case) and N is the number of numbers (8 in this case). 
Therefore,  

R = 25/100 x (8 + 1) = 9/4 = 2.25. 

If R is an integer, the Pth percentile is the number with rank R. When R is not an integer, we compute 
the Pth percentile by interpolation as follows: 

1. Define IR as the integer portion of R (the number to the left of the decimal point). For this 
example, IR = 2.  

2. Define FR as the fractional portion of R. For this example, FR = 0.25. 

3. Find the scores with Rank IR and with Rank IR + 1. For this example, this means the score with 
Rank 2 and the score with Rank 3. The scores are 5 and 7.  

4. Interpolate by multiplying the difference between the scores by FR and add the result to the 
lower score. For these data, this is (0.25)(7 - 5) + 5 = 5.5. 

Therefore, the 25th percentile is 5.5. If we had used the first definition (the smallest score greater than 
25% of the scores), the 25th percentile would have been 7. If we had used the second definition (the 
smallest score greater than or equal to 25% of the scores), the 25th percentile would have been 5.  

For a second example, consider the 20 quiz scores shown in Table 1-6.  

Table 1-6. 20 Quiz Scores.  

 
8 This section is adapted from David M. Lane. “Percentiles.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/introduction/percentiles.html 

http://onlinestatbook.com/2/introduction/percentiles.html
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Score Rank 

4 
4 
5 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
9 
9 
9 
10 
10 
10  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20  

 

We will compute the 25th and the 85th percentiles. For the 25th,  

R = 25/100 x (20 + 1) = 21/4 = 5.25. 

IR = 5 and FR = 0.25. 

Since the score with a rank of IR (which is 5) and the score with a rank of IR + 1 (which is 6) are both 
equal to 5, the 25th percentile is 5. In terms of the formula: 

25th percentile = (.25) x (5 - 5) + 5 = 5. 

For the 85th percentile, 

R = 85/100 x (20 + 1) = 17.85. 

IR = 17 and FR = 0.85  

 

The score with a rank of 17 is 9 and the score with a rank of 18 is 10. Therefore, the 85th percentile is: 

(0.85)(10 - 9) + 9 = 9.85  

Consider the 50th percentile of the numbers 2, 3, 5, 9. 

R = 50/100 x (4 + 1) = 2.5. 

Caution: FR does not generally equal the percentile to be computed as it does here. 
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IR = 2 and FR = 0.5. 

The score with a rank of IR is 3 and the score with a rank of IR + 1 is 5. Therefore, the 50th percentile is: 

(0.5)(5 - 3) + 3 = 4. 

Finally, consider the 50th percentile of the numbers 2, 3, 5, 9, 11. 

R = 50/100 x (5 + 1) = 3. 

IR = 3 and FR = 0. 

Whenever FR = 0, you simply find the number with rank IR. In this case, the third number is equal to 5, 
so the 50th percentile is 5. You will also get the right answer if you apply the general formula: 

50th percentile = (0.00) (9 - 5) + 5 = 5.  
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Chapter 2. Statistics for Describing One Variable at a Time 
Measures of Central Tendency9 
Mean 
The mean10 is the most common measure of central tendency. It is simply the sum of the numbers 
divided by the number of numbers. When using symbols and formulas to represent different statistics, 
we often distinguish between whether we are looking at a “sample” or a “population.” We’ll cover this 
distinction in more detail in our chapter about estimation. For now, think of a pollster who has 
conducted a survey with a sample of 1000 people. Even though only 1000 people responded to the 
survey, the pollster is actually interested in estimating the attitudes of a larger population—the entire 
public. 

The symbol "μ" is used for the mean of a population. The symbol "M" is used for the mean of a sample. 
The formula for μ is shown below: 

μ = ΣX/N 
where ΣX is the sum of all the numbers in the population and 
N is the number of numbers in the population. 

The formula for M is essentially identical: 

M = ΣX/N 
where ΣX is the sum of all the numbers in the sample and 
N is the number of numbers in the sample. 

As an example, the mean of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless of whether the numbers 
constitute the entire population or just a sample from the population. 

Table 2-1 shows the number of touchdown (TD) passes thrown by each of the 31 teams in the National 
Football League in the 2000 season. The mean number of touchdown passes thrown is 20.4516 as 
shown below. 

μ = ΣX/N 
  = 634/31 
  = 20.4516 

Table 2-1. Number of touchdown passes. 

37 33 33 32 29 28 28 23 22 22 22 21 21 21 20 20 19 19 18 18 18 18 16 15 14 14 14 12 12 9 6 

 

 
9 This section is adapted from David M. Lane. “Measures of Central Tendency.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/summarizing_distributions/measures.html 
10 More specifically, the arithmetic mean is the most common measure of central tendency. Although the 
arithmetic mean is not the only "mean" (there is also a geometric mean), it is by far the most commonly used. 
Therefore, if the term "mean" is used without specifying whether it is the arithmetic mean, the geometric mean, or 
some other mean, it is assumed to refer to the arithmetic mean. 

http://onlinestatbook.com/2/summarizing_distributions/measures.html
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Median 
The median is also a frequently used measure of central tendency. The median is the midpoint of a 
distribution: the same number of scores is above the median as below it. For the data in Table 2-1, there 
are 31 scores. The 16th highest score (which equals 20) is the median because there are 15 scores below 
the 16th score and 15 scores above the 16th score. The median can also be thought of as the 50th 
percentile. 

Computation of the Median 
When there is an odd number of numbers, the median is simply the middle number. For example, the 
median of 2, 4, and 7 is 4. When there is an even number of numbers, the median is the mean of the 
two middle numbers. Thus, the median of the numbers 2, 4, 7, 12 is (4+7)/2 = 5.5. 

Mode 
The mode is the most frequently occurring value. For the data in Table 2-1, the mode is 18 since more 
teams (4) had 18 touchdown passes than any other number of touchdown passes. With continuous data 
such as response time measured to many decimals, the frequency of each value is one since no two 
scores will be exactly the same (see discussion of continuous variables). Therefore the mode of 
continuous data is normally computed from a grouped frequency distribution. Table 2-2 shows a 
grouped frequency distribution for the target response time data. Since the interval with the highest 
frequency is 600-700, the mode is the middle of that interval (650). 

Table 2-2. Grouped frequency distribution. 

Range Frequency 

500-600 
600-700 
700-800 
800-900 
900-1000 
1000-1100 

3 
6 
5 
5 
0 
1 

 

Comparing Measures of Central Tendency11 
How do the various measures of central tendency compare with each other? For symmetric 
distributions, the mean and median are equal, as is the mode except in bimodal distributions. 
Differences among the measures occur with skewed distributions. Figure 2-1 shows the distribution of 
642 scores on an introductory psychology test. Notice this distribution has a slight positive skew.  

 
11 This section is adapted from David M. Lane. “Comparing Measures of Central Tendency.” Online Statistics 
Education: A Multimedia Course of Study. 
http://onlinestatbook.com/2/summarizing_distributions/comparing_measures.html 

http://onlinestatbook.com/2/summarizing_distributions/comparing_measures.html
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Figure 2-1. A distribution with a positive skew.  

Measures of central tendency are shown in Table 2-3. Notice they do not differ greatly, with the 
exception that the mode is considerably lower than the other measures. When distributions have a 
positive skew, the mean is typically higher than the median, although it may not be in bimodal 
distributions. For these data, the mean of 91.58 is higher than the median of 90. 

Table 2-3. Measures of central tendency for the test scores.  

Measure Value 

Mode 
Median 
Mean 

84.00 
90.00 
91.58 

 

The distribution of baseball salaries (in 1994) shown in Figure 2-2 has a much more pronounced skew 
than the distribution in Figure 2-1.  
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Figure 2-2. A distribution with a very large positive skew. This histogram shows the salaries of major 
league baseball players (in thousands of dollars: 25 equals 250,000).  

Table 2-4 shows the measures of central tendency for these data. The large skew results in very 
different values for these measures. No single measure of central tendency is sufficient for data such as 
these. If you were asked the very general question: "So, what do baseball players make?" and answered 
with the mean of $1,183,000, you would not have told the whole story since only about one third of 
baseball players make that much. If you answered with the mode of $250,000 or the median of 
$500,000, you would not be giving any indication that some players make many millions of dollars. 
Fortunately, there is no need to summarize a distribution with a single number. When the various 
measures differ, our opinion is that you should report the mean and the median. Sometimes it is worth 
reporting the mode as well. In the media, the median is usually reported to summarize the center of 
skewed distributions. You will hear about median salaries and median prices of houses sold, etc. This is 
better than reporting only the mean, but it would be informative to hear more statistics.  

Table 2-4. Measures of central tendency for baseball salaries (in thousands of dollars). 

Measure Value 

Mode 
Median 
Mean 

250 
500 
1,183 

 

Measures of Spread12 
What is Variability? 
Variability refers to how "spread out" a group of scores is. To see what we mean by spread out, consider 
graphs in Figure 2-3. These graphs represent the scores on two quizzes. The mean score for each quiz is 
7.0. Despite the equality of means, you can see that the distributions are quite different. Specifically, the 

 
12 This section is adapted from David M. Lane. “Measures of Variability.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/summarizing_distributions/variability.html 

http://onlinestatbook.com/2/summarizing_distributions/variability.html
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scores on Quiz 1 are more densely packed and those on Quiz 2 are more spread out. The differences 
among students were much greater on Quiz 2 than on Quiz 1. 

Quiz 1 

  
 
Quiz 2 

 

Figure 2-3. Bar charts of two quizzes. 

The terms variability, spread, and dispersion are synonyms, and refer to how spread out a distribution is. 
Just as in the section on central tendency where we discussed measures of the center of a distribution of 
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scores, in this chapter we will discuss measures of the variability of a distribution. There are four 
frequently used measures of variability: the range, interquartile range, variance, and standard deviation. 
In the next few paragraphs, we will look at each of these four measures of variability in more detail. 

Range 
The range is the simplest measure of variability to calculate, and one you have probably encountered 
many times in your life. The range is simply the highest score minus the lowest score. Let’s take a few 
examples. What is the range of the following group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the highest 
number is 10, and the lowest number is 2, so 10 - 2 = 8. The range is 8. Let’s take another example. 
Here’s a dataset with 10 numbers: 99, 45, 23, 67, 45, 91, 82, 78, 62, 51. What is the range? The highest 
number is 99 and the lowest number is 23, so 99 - 23 equals 76; the range is 76. Now consider the two 
quizzes shown in Figure 2-3. On Quiz 1, the lowest score is 5 and the highest score is 9. Therefore, the 
range is 4. The range on Quiz 2 was larger: the lowest score was 4 and the highest score was 10. 
Therefore the range is 6. 

Interquartile Range 
The interquartile range (IQR) is the range of the middle 50% of the scores in a distribution. It is 
computed as follows: 

IQR = 75th percentile - 25th percentile 

For Quiz 1, the 75th percentile is 8 and the 25th percentile is 6. The interquartile range is therefore 2. 
For Quiz 2, which has greater spread, the 75th percentile is 9, the 25th percentile is 5, and the 
interquartile range is 4. Recall that in the discussion of box plots, the 75th percentile was called the 
upper hinge and the 25th percentile was called the lower hinge. Using this terminology, the interquartile 
range is referred to as the H-spread. 

A related measure of variability is called the semi-interquartile range. The semi-interquartile range is 
defined simply as the interquartile range divided by 2. If a distribution is symmetric, the median plus or 
minus the semi-interquartile range contains half the scores in the distribution. 

Variance 
Variability can also be defined in terms of how close the scores in the distribution are to the middle of 
the distribution. Using the mean as the measure of the middle of the distribution, the variance is 
defined as the average squared difference of the scores from the mean. The data from Quiz 1 are shown 
in Table 2-5. The mean score is 7.0. Therefore, the column "Deviation from Mean" contains the score 
minus 7. The column "Squared Deviation" is simply the previous column squared. 

Table 2-5. Calculation of Variance for Quiz 1 scores. 

Scores Deviation from Mean Squared Deviation 

9 2 4 

9 2 4 

9 2 4 

8 1 1 

8 1 1 
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8 1 1 

8 1 1 

7 0 0 

7 0 0 

7 0 0 

7 0 0 

7 0 0 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 

6 -1 1 

5 -2 4 

5 -2 4 

Means 

7 0 1.5 

 

One thing that is important to notice is that the mean deviation from the mean is 0. This will always be 
the case. The mean of the squared deviations is 1.5. Therefore, the variance is 1.5. Analogous 
calculations with Quiz 2 show that its variance is 6.7. The formula for the variance is: 

 

where σ2 is the variance, μ is the mean, and N is the number of numbers. For Quiz 1, μ = 7 and N = 20.  

If the variance in a sample is used to estimate the variance in a population, then the previous formula 
underestimates the variance and the following formula should be used: 

 

where s2 is the estimate of the variance and M is the sample mean. Note that M is the mean of a sample 
taken from a population with a mean of μ. Since, in practice, the variance is usually computed in a 
sample, this formula is most often used. The simulation "estimating variance" illustrates the bias in the 
formula with N in the denominator.  



Chapter 2. Statistics for Describing One Variable at a Time 

Statistics Minus the Math – 2/16/2020 version  Page 31 

Let's take a concrete example. Assume the scores 1, 2, 4, and 5 were sampled from a larger population. 
To estimate the variance in the population you would compute s2 as follows: 

 M = (1 + 2 + 4 + 5)/4 = 12/4 = 3. 

s2 = [(1-3)2 + (2-3)2 + (4-3)2 + (5-3)2]/(4-1) 

   = (4 + 1 + 1 + 4)/3 = 10/3 = 3.333 

Standard Deviation 
The standard deviation is simply the square root of the variance. This makes the standard deviations of 
the two quiz distributions 1.225 and 2.588. We can interpret the standard deviation of X as 
approximating the typical distance between a given value of X and the mean of X. For example, suppose 
I tell you about a prison where the prisoners have a mean age of 42 years with a standard deviation of 8 
years. If I randomly select one prisoner and ask you to guess their age, you should probably guess 42 
since I’ve told you that is the mean. But even though 42 is your best guess, you can expect your guess to 
be off by about 8 years since the standard deviation is 8 (meaning the typical distance between a 
random prisoner’s age and the mean age is approximately 8). 

Transforming Variables13 
Often it is necessary to transform data from one measurement scale to another. For example, you might 
want to convert height measured in feet to height measured in inches. Table 3-6 shows the heights of 
four people measured in both feet and inches. To transform feet to inches, you simply multiply by 12. 
Similarly, to transform inches to feet, you divide by 12. 

Table 3-6. Converting between feet and inches.  

Feet Inches 

5.00 
6.25 
5.50 
5.75  

60 
75 
66 
69  

 

Some conversions require that you multiply by a number and then add a second number. A good 
example of this is the transformation between degrees Centigrade and degrees Fahrenheit. Table 3-7 
shows the temperatures of 5 US cities in the early afternoon of November 16, 2002. 

  

 
13 The initial part of this section is adapted from David M. Lane. “Linear Transformations.” Online Statistics 
Education: A Multimedia Course of Study. http://onlinestatbook.com/2/introduction/linear_transforms.html. 
There is also material adapted from David M. Lane. “Standard Normal Distribution.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/normal_distribution/standard_normal.html. 

http://onlinestatbook.com/2/introduction/linear_transforms.html
http://onlinestatbook.com/2/normal_distribution/standard_normal.html
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Table 3-7. Temperatures in 5 cities on 11/16/2002.  

City Degrees Fahrenheit Degrees Centigrade 

Houston 
Chicago 
Minneapolis 
Miami 
Phoenix 

54 
37 
31 
78 
70 

12.22 
2.78 
-0.56 
25.56 
21.11  

 

The formula to transform Centigrade to Fahrenheit is: 

F = 1.8C + 32 

The formula for converting from Fahrenheit to Centigrade is 

C = 0.5556F - 17.778 

The transformation consists of multiplying by a constant and then adding a second constant. For the 
conversion from Centigrade to Fahrenheit, the first constant is 1.8 and the second is 32. 

Figure 3-13 shows a plot of degrees Centigrade as a function of degrees Fahrenheit. Notice that the 
points form a straight line. This will always be the case if the transformation from one scale to another 
consists of multiplying by one constant and then adding a second constant. Such transformations are 
therefore called linear transformations. 

 

Figure 3-13. Degrees Centigrade as a function of degrees Fahrenheit. 
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So far, we’ve discussed transformations that are probably familiar to you. A type of transformation that 
may be new to you is standardization or creating Z scores. A value from any distribution can be 
transformed into a Z score using the following formula: 

Z = (X - μ)/σ 

where Z is the new value, X is the value on the original distribution, μ is the mean of the original 
distribution, and σ is the standard deviation of the original distribution. 

As a simple application, suppose you want the Z score for a value of 26 taken from a distribution with a 
mean of 50 and a standard deviation of 10. Applying the formula, we obtain 

Z = (26 - 50)/10 = -2.4. 

If all the values in a distribution are transformed to Z scores, then the new distribution will have a mean 
of 0 and a standard deviation of 1. This process of transforming a distribution to one with a mean of 0 
and a standard deviation of 1 is called standardizing the distribution. Sometimes it will be easier to work 
with a standardized version of a variable. 

Log Transformations14 
Sometimes it is also useful to use transformations that are not linear. For example, the log 
transformation can be used to make highly skewed distributions less skewed. This can be valuable both 
for making patterns in the data more interpretable and for helping to meet the assumptions of 
inferential statistics.  

Figure 3-14 shows an example of how a log transformation can make patterns more visible. Both graphs 
plot the brain weight of animals as a function of their body weight. The raw weights are shown in the 
upper panel; the log-transformed weights are plotted in the lower panel. 

 
14 This subsection is adapted from David M. Lane. “Log Transformations.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/transformations/log.html 

http://onlinestatbook.com/2/transformations/log.html
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Figure 3-14. Scatter plots of brain weight as a function of body weight in terms of both raw data (upper 
panel) and log-transformed data (lower panel).  

It is hard to discern a pattern in the upper panel whereas the strong relationship is shown clearly in the 
lower panel.  
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Chapter 3. Tools for Describing the Relationship Between Two Variables 
Introduction to Bivariate Data15 
Measures of central tendency, variability, and spread summarize a single variable by providing 
important information about its distribution. Often, more than one variable is collected on each 
individual. For example, in large health studies of populations it is common to obtain variables such as 
age, sex, height, weight, blood pressure, and total cholesterol on each individual. Economic studies may 
be interested in, among other things, personal income and years of education. As a third example, most 
university admissions committees ask for an applicant's high school grade point average and 
standardized admission test scores (e.g., SAT). In this chapter we consider bivariate data, which for now 
consists of two quantitative variables for each individual. Our first interest is in summarizing such data in 
a way that is analogous to summarizing univariate (single variable) data. 

By way of illustration, let's consider something with which we are all familiar: age. Let’s begin by asking 
if people tend to marry other people of about the same age. Our experience tells us "yes," but how good 
is the correspondence? One way to address the question is to look at pairs of ages for a sample of 
married couples. Table 3-1 below shows the ages of 10 married couples. Going across the columns we 
see that, yes, husbands and wives tend to be of about the same age, with men having a tendency to be 
slightly older than their wives. This is no big surprise, but at least the data bear out our experiences, 
which is not always the case.  

Table 3-1. Sample of spousal ages of 10 White American Couples. 

Husband 36 72 37 36 51 50 47 50 37 41 

Wife 35 67 33 35 50 46 47 42 36 41 

 

The pairs of ages in Table 3-1 are from a dataset consisting of 282 pairs of spousal ages, too many to 
make sense of from a table. What we need is a way to summarize the 282 pairs of ages. We know that 
each variable can be summarized by a histogram (see Figure 3-1) and by a mean and standard deviation 
(See Table 3-2). 

 

Figure 3-1. Histograms of spousal ages. 

 
15 This section is adapted from Rudy Guerra and David M. Lane. “Introduction to Bivariate Data.” Online Statistics 
Education: A Multimedia Course of Study. http://onlinestatbook.com/2/describing_bivariate_data/intro.html 

http://onlinestatbook.com/2/describing_bivariate_data/intro.html
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Table 3-2. Means and standard deviations of spousal ages. 

 Mean 
Standard 
Deviation 

Husbands 49 11 

Wives 47 11 

 

Each distribution is fairly skewed with a long right tail. From Table 3-1 we see that not all husbands are 
older than their wives and it is important to see that this fact is lost when we separate the variables. 
That is, even though we provide summary statistics on each variable, the pairing within couple is lost by 
separating the variables. We cannot say, for example, based on the means alone what percentage of 
couples has younger husbands than wives. We have to count across pairs to find this out. Only by 
maintaining the pairing can meaningful answers be found about couples per se. Another example of 
information not available from the separate descriptions of husbands and wives' ages is the mean age of 
husbands with wives of a certain age. For instance, what is the average age of husbands with 45-year-
old wives? Finally, we do not know the relationship between the husband's age and the wife's age. 

We can learn much more by displaying the bivariate data in a graphical form that maintains the pairing. 
Figure 3-2 shows a scatter plot of the paired ages. The x-axis represents the age of the husband and the 
y-axis the age of the wife.  

 

Figure 3-2. Scatter plot showing wife's age as a function of husband's age. 

There are two important characteristics of the data revealed by Figure 3-2. First, it is clear that there is a 
strong relationship between the husband's age and the wife's age: the older the husband, the older the 
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wife. When one variable (Y) increases with the second variable (X), we say that X and Y have a positive 
association. Conversely, when Y decreases as X increases, we say that they have a negative association. 

Second, the points cluster along a straight line. When this occurs, the relationship is called a linear 
relationship.  

Figure 3-3 shows a scatter plot of Arm Strength and Grip Strength from 149 individuals working in 
physically demanding jobs including electricians, construction and maintenance workers, and auto 
mechanics. Not surprisingly, the stronger someone's grip, the stronger their arm tends to be. There is 
therefore a positive association between these variables. Although the points cluster along a line, they 
are not clustered quite as closely as they are for the scatter plot of spousal age. 

 

Figure 3-3. Scatter plot of Grip Strength and Arm Strength. 

Not all scatter plots show linear relationships. Figure 3-4 shows the results of an experiment conducted 
by Galileo on projectile motion.16 In the experiment, Galileo rolled balls down an incline and measured 
how far they traveled as a function of the release height. It is clear from Figure 3-4 that the relationship 
between "Release Height" and "Distance Traveled" is not described well by a straight line: If you drew a 
line connecting the lowest point and the highest point, all of the remaining points would be above the 
line. The data are better fit by a parabola. 

 
16 https://www.amstat.org/publications/jse/v3n1/datasets.dickey.html 

https://www.amstat.org/publications/jse/v3n1/datasets.dickey.html
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Figure 3-4. Galileo's data showing a non-linear relationship. 

Scatter plots that show linear relationships between variables can differ in several ways including the 
slope of the line about which they cluster and how tightly the points cluster about the line. We now turn 
our attention to a statistical measure of the strength of the relationship between two quantitative 
variables. 

What is Correlation?17 
The Pearson product-moment correlation coefficient is a measure of the strength of the linear 
relationship between two variables. It is referred to as Pearson's correlation or simply as the correlation 
coefficient. If the relationship between the variables is not linear, then the correlation coefficient does 
not adequately represent the strength of the relationship between the variables. 

The symbol for Pearson's correlation is "ρ" when it is measured in the population and "r" when it is 
measured in a sample. Because we will be dealing almost exclusively with samples, we will use r to 
represent Pearson's correlation unless otherwise noted. 

Pearson's r can range from -1 to 1. An r of -1 indicates a perfect negative linear relationship between 
variables, an r of 0 indicates no linear relationship between variables, and an r of 1 indicates a perfect 
positive linear relationship between variables. Figure 3-5 shows a scatter plot for which r = 1. 

 
17 This section is adapted from David M. Lane. “Values of the Pearson Correlation.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/describing_bivariate_data/pearson.html 

http://onlinestatbook.com/2/describing_bivariate_data/pearson.html
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Figure 3-5. A perfect positive linear relationship, r = 1.  

 

Figure 3-6. A perfect negative linear relationship, r = -1.  

 



Chapter 3. Tools for Describing the Relationship Between Two Variables 

Statistics Minus the Math – 2/16/2020 version  Page 40 

 

Figure 3-7. A scatter plot for which r = 0. Notice that there is no relationship between X and Y.  

With real data, you would not expect to get values of r of exactly -1, 0, or 1. The data for spousal ages 
shown in Figure 3-8 and described in the introductory section has an r of 0.97. 

 

Figure 3-8. Scatter plot of spousal ages, r = 0.97.  
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Figure 3-9. Scatter plot of Grip Strength and Arm Strength, r = 0.63.  

The relationship between grip strength and arm strength depicted in Figure 3-9 (also described in the 
introductory section) is 0.63. 

How Correlation is Calculated18 
There are several formulas that can be used to compute Pearson's correlation. Some formulas make 
more conceptual sense whereas others are easier to actually compute. We are going to begin with a 
formula that makes more conceptual sense. 

We are going to compute the correlation between the variables X and Y shown in Table 3-3. We begin by 
computing the mean for X and subtracting this mean from all values of X. The new variable is called "x." 
The variable "y" is computed similarly. The variables x and y are said to be deviation scores because each 
score is a deviation from the mean. Notice that the means of x and y are both 0. Next we create a new 
column by multiplying x and y.  

Before proceeding with the calculations, let's consider why the sum of the xy column reveals the 
relationship between X and Y. If there were no relationship between X and Y, then positive values of x 
would be just as likely to be paired with negative values of y as with positive values. This would make 
negative values of xy as likely as positive values and the sum would be small. On the other hand, 

 
18 This section is adapted from David M. Lane. “Computing Pearson's r.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/describing_bivariate_data/calculation.html 

http://onlinestatbook.com/2/describing_bivariate_data/calculation.html
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consider Table 3-3 in which high values of X are associated with high values of Y and low values of X are 
associated with low values of Y. You can see that positive values of x are associated with positive values 
of y and negative values of x are associated with negative values of y. In all cases, the product of x and y 
is positive, resulting in a high total for the xy column. Finally, if there were a negative relationship then 
positive values of x would be associated with negative values of y and negative values of x would be 
associated with positive values of y. This would lead to negative values for xy. 

Table 3-3. Calculation of r. 

  X Y x y xy x2 y2 

   1  4 -3 -5 15  9 25 

   3  6 -1 -3  3  1  9 

   5 10  1  1  1  1  1 

   5 12  1  3  3  1  9 

   6 13  2  4  8  4 16 

Total 20 45  0  0 30 16 60 

Mean  4  9  0  0  6     

 

Pearson's r is designed so that the correlation between height and weight is the same whether height is 
measured in inches or in feet. To achieve this property, Pearson's correlation is computed by dividing 
the sum of the xy column (Σxy) by the square root of the product of the sum of the x2 column (Σx2) and 
the sum of the y2 column (Σy2). The resulting formula is: 

 

and therefore 

 

An alternative computational formula that avoids the step of computing deviation scores is: 
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Introduction to Linear Regression19 
In simple linear regression, we predict scores on one variable from the scores on a second variable. The 
variable we are predicting is called the dependent variable and is referred to as Y. The variable we are 
basing our predictions on is called the independent variable and is referred to as X. When there is only 
one predictor variable, the prediction method is called simple regression. In simple linear regression, the 
topic of this section, the predictions of Y when plotted as a function of X form a straight line. 

The example data in Table 3-4 are plotted in Figure 3-10. You can see that there is a positive relationship 
between X and Y. If you were going to predict Y from X, the higher the value of X, the higher your 
prediction of Y.  

Table 3-4. Example data. 

X  Y  

1.00  1.00  

2.00  2.00  

3.00  1.30  

4.00  3.75  

5.00  2.25  

 
19 This section is adapted from David M. Lane. “Introduction to Linear Regression.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/regression/intro.html 

http://onlinestatbook.com/2/regression/intro.html
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Figure 3-10. A scatter plot of the example data. 

Linear regression consists of finding the best-fitting straight line through the points. The best-fitting line 
is called a regression line. The black diagonal line in Figure 3-11 is the regression line and consists of the 
predicted score on Y for each possible value of X. The vertical lines from the points to the regression line 
represent the errors of prediction. As you can see, the red point is very near the regression line; its error 
of prediction is small. By contrast, the yellow point is much higher than the regression line and therefore 
its error of prediction is large.  
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Figure 3-11. A scatter plot of the example data. The black line consists of the predictions, the points are 
the actual data, and the vertical lines between the points and the black line represent errors of 
prediction. 

The error of prediction for a point is the value of the point minus the predicted value (the value on the 
line). Table 3-5 shows the predicted values (Y') and the errors of prediction (Y-Y'). For example, the first 
point has a Y of 1.00 and a predicted Y (called Y') of 1.21. Therefore, its error of prediction is -0.21.  

Table 3-5. Example data. 

X  Y  Y'  Y-Y'  (Y-Y')2  

1.00  1.00  1.210  -0.210  0.044  

2.00  2.00  1.635  0.365  0.133  

3.00  1.30  2.060  -0.760  0.578  

4.00  3.75  2.485  1.265  1.600  

5.00  2.25  2.910  -0.660  0.436  

 

You may have noticed that we did not specify what is meant by "best-fitting line." By far, the most 
commonly-used criterion for the best-fitting line is the line that minimizes the sum of the squared errors 
of prediction. That is the criterion that was used to find the line in Figure 3-11. The last column in Table 
3-5 shows the squared errors of prediction. The sum of the squared errors of prediction shown in Table 
3-5 is lower than it would be for any other regression line.  
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The formula for a regression line is 

Y' = bX + A 

where Y' is the predicted score, b is the slope of the line, and A is the Y intercept. The equation for the 
line in Figure 3-11 is 

Y' = 0.425X + 0.785  

For X = 1, 

Y' = (0.425)(1) + 0.785 = 1.21. 

For X = 2, 

Y' = (0.425)(2) + 0.785 = 1.64. 

A Real Example 
The case study "SAT and College GPA"20 contains high school and university grades for 105 computer 
science majors at a local state school. We now consider how we could predict a student's university GPA 
if we knew his or her high school GPA. 

Figure 3-12 shows a scatter plot of University GPA as a function of High School GPA. You can see from 
the figure that there is a strong positive relationship. The correlation is 0.78. The regression equation is 

University GPA' = (0.675)(High School GPA) + 1.097 

Therefore, a student with a high school GPA of 3 would be predicted to have a university GPA of 

University GPA' = (0.675)(3) + 1.097 = 3.12. 

 

Figure 3-12. University GPA as a function of High School GPA.  

 
20 http://onlinestatbook.com/2/case_studies/sat.html 

http://onlinestatbook.com/2/case_studies/sat.html
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Chapter 4. Estimation 
Populations and Samples21 
In statistics, we often rely on a sample --- that is, a small subset of a larger set of data --- to draw 
inferences about the larger set. The larger set is known as the population from which the sample is 
drawn.  

Example #1: You have been hired by the National Election Commission to examine how the 
American people feel about the fairness of the voting procedures in the U.S. Whom will you 
ask? 

It is not practical to ask every single American how he or she feels about the fairness of the voting 
procedures. Instead, we query a relatively small number of Americans, and draw inferences about the 
entire country from their responses. The Americans actually queried constitute our sample of the larger 
population of all Americans. The mathematical procedures whereby we convert information about the 
sample into intelligent guesses about the population fall under the rubric of inferential statistics.  

A sample is typically a small subset of the population. In the case of voting attitudes, we would sample a 
few thousand Americans drawn from the hundreds of millions that make up the country. In choosing a 
sample, it is therefore crucial that it not over-represent one kind of citizen at the expense of others. For 
example, something would be wrong with our sample if it happened to be made up entirely of Florida 
residents. If the sample held only Floridians, it could not be used to infer the attitudes of other 
Americans. The same problem would arise if the sample were comprised only of Republicans. Inferential 
statistics are based on the assumption that sampling is random. We trust a random sample to represent 
different segments of society in close to the appropriate proportions (provided the sample is large 
enough; see below). 

Example #2: We are interested in examining how many math classes have been taken on 
average by current graduating seniors at American colleges and universities during their four 
years in school. Whereas our population in the last example included all US citizens, now it 
involves just the graduating seniors throughout the country. This is still a large set since there 
are thousands of colleges and universities, each enrolling many students. (New York 
University, for example, enrolls 48,000 students.) It would be prohibitively costly to examine 
the transcript of every college senior. We therefore take a sample of college seniors and then 
make inferences to the entire population based on what we find. To make the sample, we 
might first choose some public and private colleges and universities across the United States. 
Then we might sample 50 students from each of these institutions. Suppose that the average 
number of math classes taken by the people in our sample were 3.2. Then we might speculate 
that 3.2 approximates the number we would find if we had the resources to examine every 
senior in the entire population. But we must be careful about the possibility that our sample 
is non-representative of the population. Perhaps we chose an overabundance of math 
majors, or chose too many technical institutions that have heavy math requirements. Such 
bad sampling makes our sample unrepresentative of the population of all seniors. 

 

 
21 This section is adapted from Mikki Hebl and David Lane. “Inferential Statistics.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/introduction/inferential.html 

http://onlinestatbook.com/2/introduction/inferential.html
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Example #3: A substitute teacher wants to know how students in the class did on their last 
test. The teacher asks the 10 students sitting in the front row to state their latest test score. 
He concludes from their report that the class did extremely well. What is the sample? What is 
the population? Can you identify any problems with choosing the sample in the way that the 
teacher did? 

In Example #3, the population consists of all students in the class. The sample is made up of just the 10 
students sitting in the front row. The sample is not likely to be representative of the population. Those 
who sit in the front row tend to be more interested in the class and tend to perform higher on tests. 
Hence, the sample may perform at a higher level than the population.  

Example #4: A coach is interested in how many cartwheels the average college freshmen at 
his university can do. Eight volunteers from the freshman class step forward. After observing 
their performance, the coach concludes that college freshmen can do an average of 16 
cartwheels in a row without stopping.  

In Example #4, the population is the class of all freshmen at the coach's university. The sample is 
composed of the 8 volunteers. The sample is poorly chosen because volunteers are more likely to be 
able to do cartwheels than the average freshman; people who can't do cartwheels probably did not 
volunteer! In the example, we are also not told of the gender of the volunteers. Were they all women, 
for example? That might affect the outcome, contributing to the non-representative nature of the 
sample (if the school is co-ed). 

Simple Random Sampling 
Researchers adopt a variety of sampling strategies. The most straightforward is simple random 
sampling. Such sampling requires every member of the population to have an equal chance of being 
selected into the sample. In addition, the selection of one member must be independent of the 
selection of every other member. That is, picking one member from the population must not increase or 
decrease the probability of picking any other member (relative to the others). In this sense, we can say 
that simple random sampling chooses a sample by pure chance. To check your understanding of simple 
random sampling, consider the following example. What is the population? What is the sample? Was 
the sample picked by simple random sampling? Is it biased?  

Example #5: A research scientist is interested in studying the experiences of twins raised 
together versus those raised apart. She obtains a list of twins from the National Twin Registry, 
and selects two subsets of individuals for her study. First, she chooses all those in the registry 
whose last name begins with Z. Then she turns to all those whose last name begins with B. 
Because there are so many names that start with B, however, our researcher decides to 
incorporate only every other name into her sample. Finally, she mails out a survey and 
compares characteristics of twins raised apart versus together. 

In Example #5, the population consists of all twins recorded in the National Twin Registry. It is important 
that the researcher only make statistical generalizations to the twins on this list, not to all twins in the 
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nation or world. That is, the National Twin Registry may not be representative of all twins. Even if 
inferences are limited to the Registry, a number of problems affect the sampling procedure we 
described. For instance, choosing only twins whose last names begin with Z does not give every 
individual an equal chance of being selected into the sample. Moreover, such a procedure risks over-
representing ethnic groups with many surnames that begin with Z. There are other reasons why 
choosing just the Z's may bias the sample. Perhaps such people are more patient than average because 
they often find themselves at the end of the line! The same problem occurs with choosing twins whose 
last name begins with B. An additional problem for the B's is that the “every-other-one” procedure 
disallowed adjacent names on the B part of the list from being both selected. Just this defect alone 
means the sample was not formed through simple random sampling. 

Sample size matters 
Recall that the definition of a random sample is a sample in which every member of the population has 
an equal chance of being selected. This means that the sampling procedure rather than the results of 
the procedure define what it means for a sample to be random. Random samples, especially if the 
sample size is small, are not necessarily representative of the entire population. For example, if a 
random sample of 20 subjects were taken from a population with an equal number of males and 
females, there would be a nontrivial probability (0.06) that 70% or more of the sample would be female. 
Such a sample would not be representative, although it would be drawn randomly. Only a large sample 
size makes it likely that our sample is close to representative of the population. For this reason, 
inferential statistics take into account the sample size when generalizing results from samples to 
populations. In later chapters, you'll see what kinds of mathematical techniques ensure this sensitivity to 
sample size. 

More complex sampling 
Sometimes it is not feasible to build a sample using simple random sampling. To see the problem, 
consider the fact that both Dallas and Houston are competing to be hosts of the 2012 Olympics. Imagine 
that you are hired to assess whether most Texans prefer Houston to Dallas as the host, or the reverse. 
Given the impracticality of obtaining the opinion of every single Texan, you must construct a sample of 
the Texas population. But now notice how difficult it would be to proceed by simple random sampling. 
For example, how will you contact those individuals who don’t vote and don’t have a phone? Even 
among people you find in the telephone book, how can you identify those who have just relocated to 
California (and had no reason to inform you of their move)? What do you do about the fact that since 
the beginning of the study, an additional 4,212 people took up residence in the state of Texas? As you 
can see, it is sometimes very difficult to develop a truly random procedure. For this reason, other kinds 
of sampling techniques have been devised. We now discuss two of them.  

Random Assignment 
In experimental research, populations are often hypothetical. For example, in an experiment comparing 
the effectiveness of a new anti-depressant drug with a placebo, there is no actual population of 
individuals taking the drug. In this case, a specified population of people with some degree of 
depression is defined and a random sample is taken from this population. The sample is then randomly 
divided into two groups; one group is assigned to the treatment condition (drug) and the other group is 
assigned to the control condition (placebo). This random division of the sample into two groups is called 
random assignment. Random assignment is critical for the validity of an experiment. For example, 
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consider the bias that could be introduced if the first 20 subjects to show up at the experiment were 
assigned to the experimental group and the second 20 subjects were assigned to the control group. It is 
possible that subjects who show up late tend to be more depressed than those who show up early, thus 
making the experimental group less depressed than the control group even before the treatment was 
administered.  

In experimental research of this kind, failure to assign subjects randomly to groups is generally more 
serious than having a non-random sample. Failure to randomize (the former error) invalidates the 
experimental findings. A non-random sample (the latter error) simply restricts the generalizability of the 
results. 

Stratified Sampling 
Since simple random sampling often does not ensure a representative sample, a sampling method called 
stratified random sampling is sometimes used to make the sample more representative of the 
population. This method can be used if the population has a number of distinct "strata" or groups. In 
stratified sampling, you first identify members of your sample who belong to each group. Then you 
randomly sample from each of those subgroups in such a way that the sizes of the subgroups in the 
sample are proportional to their sizes in the population.  

Let's take an example: Suppose you were interested in views of capital punishment at an urban 
university. You have the time and resources to interview 200 students. The student body is diverse with 
respect to age; many older people work during the day and enroll in night courses (average age is 39), 
while younger students generally enroll in day classes (average age of 19). It is possible that night 
students have different views about capital punishment than day students. If 70% of the students were 
day students, it makes sense to ensure that 70% of the sample consisted of day students. Thus, your 
sample of 200 students would consist of 140 day students and 60 night students. The proportion of day 
students in the sample and in the population (the entire university) would be the same. Inferences to 
the entire population of students at the university would therefore be more secure. 

Confidence Intervals22 
Say you were interested in the mean weight of 10-year-old girls living in the United States. Since it 
would have been impractical to weigh all the 10-year-old girls in the United States, you took a sample of 
16 and found that the mean weight was 90 pounds. This sample mean of 90 is a point estimate of the 
population mean. A point estimate by itself is of limited usefulness because it does not reveal the 
uncertainty associated with the estimate; you do not have a good sense of how far this sample mean 
may be from the population mean. For example, can you be confident that the population mean is 
within 5 pounds of 90? You simply do not know.  

Confidence intervals provide more information than point estimates. Confidence intervals for means are 
intervals constructed using a procedure that will contain the population mean a specified proportion of 
the time, typically either 95% or 99% of the time. These intervals are referred to as 95% and 99% 
confidence intervals respectively. An example of a 95% confidence interval is shown below:  

72.85 < μ < 107.15 

 
22 This section is adapted from David M. Lane. “Confidence Intervals Introduction.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/estimation/confidence.html 

http://onlinestatbook.com/2/estimation/confidence.html
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There is good reason to believe that the population mean lies between these two bounds of 72.85 and 
107.15 since 95% of the time confidence intervals contain the true mean.  

If repeated samples were taken and the 95% confidence interval computed for each sample, 95% of the 
intervals would contain the population mean. Naturally, 5% of the intervals would not contain the 
population mean.  

It is natural to interpret a 95% confidence interval as an interval with a 0.95 probability of containing the 
population mean. However, the proper interpretation is not that simple. One problem is that the 
computation of a confidence interval does not take into account any other information you might have 
about the value of the population mean. For example, if numerous prior studies had all found sample 
means above 110, it would not make sense to conclude that there is a 0.95 probability that the 
population mean is between 72.85 and 107.15. 

Confidence intervals can be computed for various parameters, not just the mean. For example, later in 
this chapter you will see how to compute a confidence interval for ρ, the population value of Pearson's r, 
based on sample data. 

Using Confidence Intervals23 
It is much more common for a researcher to be interested in the difference between means than in the 
specific values of the means themselves. We take as an example the data from the "Animal Research"24 
case study. In this experiment, students rated (on a 7-point scale) whether they thought animal research 
is wrong. The sample sizes, means, and variances are shown separately for males and females in Table 4-
1.  

Table 4-1. Means and Variances in Animal Research study. 

Condition  n  Mean  Variance  

Females  17  5.353  2.743  

Males  17  3.882  2.985  

 

As you can see, the females rated animal research as more wrong than did the males. This sample 
difference between the female mean of 5.35 and the male mean of 3.88 is 1.47. However, the gender 
difference in this particular sample is not very important. What is important is the difference in the 
population. The difference in sample means is used to estimate the difference in population means. The 
accuracy of the estimate is revealed by a confidence interval. 

In order to construct a confidence interval, we are going to make some assumptions. These won’t make 
a lot of sense yet, but here are the three assumptions we need to make: 

1. The two populations have the same variance. This assumption is called the assumption of 
homogeneity of variance. 

 
23 This section is adapted from David M. Lane. “Difference between Means.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/estimation/difference_means.html 
24 http://onlinestatbook.com/2/case_studies/animal_research.html 

http://onlinestatbook.com/2/estimation/difference_means.html
http://onlinestatbook.com/2/case_studies/animal_research.html
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2. The populations are normally distributed. 

3. Each value is sampled independently from each other value. 

Using these assumptions, one can use a bunch of fancy math formulas (or statistical software) to get the 
following confidence interval: 

0.29 ≤ μf - μm ≤ 2.65 

where μf is the population mean for females and μm is the population mean for males. This analysis 
provides evidence that the mean for females is higher than the mean for males, and that the difference 
between means in the population is likely to be between 0.29 and 2.65. Since 0 does not fall within the 
range of the confidence interval, we’ve found evidence that there is a difference between males and 
females, so we can say that the results are statistically significant.  
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Chapter 5. Probability Distributions 
Various Types of Distributions25 
Distributions of Discrete Variables  
I recently purchased a bag of Plain M&M's. The M&M's were in six different colors. A quick count 
showed that there were 55 M&M's: 17 brown, 18 red, 7 yellow, 7 green, 2 blue, and 4 orange. These 
counts are shown below in Table 5-1. 

Table 5-1. Frequencies in the Bag of M&M's 

Color Frequency 

Brown 
Red 
Yellow 
Green 
Blue 
Orange 

17 
18 
7 
7 
2 
4 

 

This table is called a frequency table and it describes the distribution of M&M color frequencies. Not 
surprisingly, this kind of distribution is called a frequency distribution. Often a frequency distribution is 
shown graphically as in Figure 5-1. 

 

Figure 5-1. Distribution of 55 M&M's.  

The distribution shown in Figure 5-1 concerns just my one bag of M&M's. You might be wondering 
about the distribution of colors for all M&M's. The manufacturer of M&M's provides some information 
about this matter, but they do not tell us exactly how many M&M's of each color they have ever 
produced. Instead, they report proportions rather than frequencies. Figure 5-2 shows these proportions. 

 
25 This section is adapted from David M. Lane and Heidi Ziemer. “Distributions.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/introduction/distributions.html 

http://onlinestatbook.com/2/introduction/distributions.html
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Since every M&M is one of the six familiar colors, the six proportions shown in the figure add to one. We 
call Figure 5-2 a probability distribution because if you choose an M&M at random, the probability of 
getting, say, a brown M&M is equal to the proportion of M&M's that are brown (0.30). 

 

Figure 5-2. Distribution of all M&M's. 

Notice that the distributions in Figures 5-1 and 5-2 are not identical. Figure 5-1 portrays the distribution 
in a sample of 55 M&M's. Figure 5-2 shows the proportions for all M&M's. Chance factors involving the 
machines used by the manufacturer introduce random variation into the different bags produced. Some 
bags will have a distribution of colors that is close to Figure 5-2; others will be further away. 

Continuous Variables 
The variable "color of M&M" used in this example is a discrete variable, and its distribution is also called 
discrete. Let us now extend the concept of a distribution to continuous variables. 

The data shown in Table 5-2 are the times it took David Lane (the author of much of the material 
appearing in this book) to move the cursor over a small target in a series of 20 trials. The times are 
sorted from shortest to longest. The variable "time to respond" is a continuous variable. With time 
measured accurately (to many decimal places), no two response times would be expected to be the 
same. Measuring time in milliseconds (thousandths of a second) is often precise enough to approximate 
a continuous variable in psychology. As you can see in Table 5-2, measuring David Lane's responses this 
way produced times no two of which were the same. As a result, a frequency distribution would be 
uninformative: it would consist of the 20 times in the experiment, each with a frequency of 1. 

Table 5-2. Response Times 

568 
577 
581 
640 
641 
645 

720 
728 
729 
777 
808 
824 
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657 
673 
696 
703 

825 
865 
875 
1007 

 

The solution to this problem is to create a grouped frequency distribution, as we saw when learning 
about histograms in Chapter 1. In a grouped frequency distribution, scores falling within various ranges 
are tabulated. Table 5-3 shows a grouped frequency distribution for these 20 times. 

Table 5-3. Grouped frequency distribution 

Range Frequency 

500-600 
600-700 
700-800 
800-900 
900-1000 
1000-1100 

3 
6 
5 
5 
0 
1  

  

Figure 5-3 shows a histogram for the frequency distribution in Table 5-3.  

 

Figure 5-3. A histogram of the grouped frequency distribution shown in Table 5-3. The labels on the X-
axis are the middle values of the range they represent.  

Probability Densities  
The histogram in Figure 5-3 portrays just David Lane’s 20 times in the one experiment. To represent the 
probability associated with an arbitrary movement (which can take any positive amount of time), we 
must represent all these potential times at once. For this purpose, we plot the distribution for the 
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continuous variable of time. Distributions for continuous variables are called continuous distributions. 
They also carry the fancier name probability density. Some probability densities have particular 
importance in statistics. A very important one is shaped like a bell, and called the normal distribution. 
Many naturally-occurring phenomena can be approximated surprisingly well by this distribution. It will 
serve to illustrate some features of all continuous distributions. 

An example of a normal distribution is shown in Figure 5-4. Do you see the "bell"? The normal 
distribution doesn't represent a real bell, however, since the left and right tips extend indefinitely (we 
can't draw them any further so they look like they've stopped in our diagram). The Y-axis in the normal 
distribution represents the "density of probability." Intuitively, it shows the chance of obtaining values 
near corresponding points on the X-axis. In Figure 5-4, for example, the probability of an observation 
with value near 40 is about half of the probability of an observation with value near 50. 

Although this text does not discuss the concept of probability density in detail, you should keep the 
following ideas in mind about the curve that describes a continuous distribution (like the normal 
distribution). First, the area under the curve equals 1. Second, the probability of any exact value of X is 0. 
Finally, the area under the curve and bounded between two given points on the X-axis is the probability 
that a number chosen at random will fall between the two points. Let us illustrate with David Lane's 
hand movements. First, the probability that his movement takes some amount of time is one! (We 
exclude the possibility of him never finishing his gesture.) Second, the probability that his movement 
takes exactly 598.956432342346576 milliseconds is essentially zero. (We can make the probability as 
close as we like to zero by making the time measurement more and more precise.) Finally, suppose that 
the probability of David Lane's movement taking between 600 and 700 milliseconds is one tenth. Then 
the continuous distribution for David Lane's possible times would have a shape that places 10% of the 
area below the curve in the region bounded by 600 and 700 on the X-axis. 

 

Figure 5-4. A normal distribution. 
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Shapes of Distributions 
As we’ve already seen when graphing different data, distributions have different shapes; they don't all 
look like the normal distribution in Figure 5-4. For example, the normal probability density is higher in 
the middle compared to its two tails. Other distributions need not have this feature. There is even 
variation among the distributions that we call "normal." For example, some normal distributions are 
more spread out than the one shown in Figure 5-4 (their tails begin to hit the X-axis further from the 
middle of the curve -- for example, at 10 and 90 if drawn in place of Figure 5-4). Others are less spread 
out (their tails might approach the X-axis at 30 and 70). We’ll learn more about the details of the normal 
distribution later in this chapter. 

The distribution shown in Figure 5-4 is symmetric; if you folded it in the middle, the two sides would 
match perfectly. Figure 5-5 shows the discrete distribution of scores on a psychology test. This 
distribution is not symmetric: the tail in the positive direction extends further than the tail in the 
negative direction. A distribution with the longer tail extending in the positive direction is said to have a 
positive skew. It is also described as "skewed to the right." 

 

Figure 5-5. A distribution with a positive skew.  

Figure 5-6 shows the salaries of major league baseball players in 1974 (in thousands of dollars). This 
distribution has an extreme positive skew.  
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Figure 5-6. A distribution with a very large positive skew.  

A continuous distribution with a positive skew is shown in Figure 5-7.  

 

Figure 5-7. A continuous distribution with a positive skew. 

Although less common, some distributions have a negative skew. Figure 5-8 shows the scores on a 20-
point problem on a statistics exam. Since the tail of the distribution extends to the left, this distribution 
is skewed to the left. 
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Figure 5-8. A distribution with negative skew. This histogram shows the frequencies of various scores on 
a 20-point question on a statistics test. 

A continuous distribution with a negative skew is shown in Figure 5-9.  

 

Figure 5-9. A continuous distribution with a negative skew. 

The distributions shown so far all have one distinct high point or peak. The distribution in Figure 5-10 
has two distinct peaks. A distribution with two peaks is called a bimodal distribution. 
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Figure 5-10. Frequencies of times between eruptions of the Old Faithful geyser. Notice the two distinct 
peaks: one at 1.75 and the other at 4.25.  

Normal Distributions26 
The normal distribution is the most important and most widely used distribution in statistics. It is 
sometimes called the "bell curve," although the tonal qualities of such a bell would be less than pleasing. 
It is also called the "Gaussian curve" after the mathematician Karl Friedrich Gauss. Although Gauss 
played an important role in its history, Abraham de Moivre first discovered the normal distribution. 

Strictly speaking, it is not correct to talk about "the normal distribution" since there are many normal 
distributions. Normal distributions can differ in their means and in their standard deviations. Figure 5-11 
shows three normal distributions. The green (left-most) distribution has a mean of -3 and a standard 
deviation of 0.5, the distribution in red (the middle distribution) has a mean of 0 and a standard 
deviation of 1, and the distribution in black (right-most) has a mean of 2 and a standard deviation of 3. 
These as well as all other normal distributions are symmetric with relatively more values at the center of 
the distribution and relatively few in the tails.  

 
26 The initial part of this section is adapted from David M. Lane. “Introduction to Normal Distributions.” Online 
Statistics Education: A Multimedia Course of Study. http://onlinestatbook.com/2/normal_distribution/intro.html 

http://onlinestatbook.com/2/normal_distribution/intro.html
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Figure 5-11. Normal distributions differing in mean and standard deviation.  

Seven features of normal distributions are listed below. These features are illustrated in more detail in 
the remaining sections of this chapter. 

1. Normal distributions are symmetric around their mean. 

2. The mean, median, and mode of a normal distribution are equal. 

3. The area under the normal curve is equal to 1.0. 

4. Normal distributions are denser in the center and less dense in the tails.  

5. Normal distributions are defined by two parameters, the mean (μ) and the standard deviation 
(σ). 

6. 68% of the area of a normal distribution is within one standard deviation of the mean. 

7. Approximately 95% of the area of a normal distribution is within two standard deviations of the 
mean. 

Importance of Normal Distributions27 
The importance of the normal curve stems primarily from the fact that the distributions of many natural 
phenomena are at least approximately normally distributed. One of the first applications of the normal 
distribution was to the analysis of errors of measurement made in astronomical observations, errors 
that occurred because of imperfect instruments and imperfect observers. Galileo in the 17th century 
noted that these errors were symmetric and that small errors occurred more frequently than large 
errors. This led to several hypothesized distributions of errors, but it was not until the early 19th century 

 
27 This subsection is adapted from David M. Lane. “History of the Normal Distribution.” Online Statistics Education: 
A Multimedia Course of Study. http://onlinestatbook.com/2/normal_distribution/history_normal.html 

http://onlinestatbook.com/2/normal_distribution/history_normal.html
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that it was discovered that these errors followed a normal distribution. Independently, the 
mathematicians Adrain in 1808 and Gauss in 1809 developed the formula for the normal distribution 
and showed that errors were fit well by this distribution. 

Most statistical procedures for testing differences between means assume normal distributions. 
Because the distribution of means is very close to normal, these tests work well even if the original 
distribution is only roughly normal. 

Quételet was the first to apply the normal distribution to human characteristics. He noted that 
characteristics such as height, weight, and strength were normally distributed. 

Areas Under Normal Distributions28 
Areas under portions of a normal distribution can be computed by using calculus. Since this is a non-
mathematical treatment of statistics, we will rely on computer programs and tables to determine these 
areas. Figure 5-12 shows a normal distribution with a mean of 50 and a standard deviation of 10. The 
shaded area between 40 and 60 contains 68% of the distribution.  

 

Figure 5-12. Normal distribution with a mean of 50 and standard deviation of 10. 68% of the area is 
within one standard deviation (10) of the mean (50). 

Figure 5-13 shows a normal distribution with a mean of 100 and a standard deviation of 20. As in Figure 
1, 68% of the distribution is within one standard deviation of the mean.  

 

Figure 5-13. Normal distribution with a mean of 100 and standard deviation of 20. 68% of the area is 
within one standard deviation (20) of the mean (100). 

The normal distributions shown in Figures 5-12 and 5-13 are specific examples of the general rule that 
68% of the area of any normal distribution is within one standard deviation of the mean. 

 
28 This subsection is adapted from David M. Lane. “Areas Under Normal Distributions.” Online Statistics Education: 
A Multimedia Course of Study. http://onlinestatbook.com/2/normal_distribution/areas_normal.html 

http://onlinestatbook.com/2/normal_distribution/areas_normal.html
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Figure 5-14 shows a normal distribution with a mean of 75 and a standard deviation of 10. The shaded 
area contains 95% of the area and extends from 55.4 to 94.6. For all normal distributions, 95% of the 
area is within 1.96 standard deviations of the mean. For quick approximations, it is sometimes useful to 
round off and use 2 rather than 1.96 as the number of standard deviations you need to extend from the 
mean so as to include 95% of the area.  

 

Figure 5-14. A normal distribution with a mean of 75 and a standard deviation of 10. 95% of the area is 
within 1.96 standard deviations of the mean. 

It is easy to find free online normal distribution calculators that will give you the areas under the normal 
distribution (e.g., http://onlinestatbook.com/2/calculators/normal_dist.html). For example, you can use 
one to find the proportion of a normal distribution with a mean of 90 and a standard deviation of 12 
that is above 110. Set the mean to 90 and the standard deviation to 12. Then enter "110" in the box to 
the right of the radio button "Above." At the bottom of the display you will see that the shaded area is 
0.0478. See if you can use the calculator to find that the area between 115 and 120 is 0.0124. 

http://onlinestatbook.com/2/calculators/normal_dist.html
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Figure 5-15. Display from calculator showing the area above 110. 

Say you wanted to find the score corresponding to the 75th percentile of a normal distribution with a 
mean of 90 and a standard deviation of 12. Using an inverse normal calculator (e.g., 
http://onlinestatbook.com/2/calculators/inverse_normal_dist.html), you enter the parameters as 
shown in Figure 5-16 and find that the area below 98.09 is 0.75. 

http://onlinestatbook.com/2/calculators/inverse_normal_dist.html
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Figure 5-16. Display from normal calculator showing that the 75th percentile is 98.09. 

The Standard Normal Distribution29 
As discussed above, normal distributions do not necessarily have the same means and standard 
deviations. A normal distribution with a mean of 0 and a standard deviation of 1 is called a standard 
normal distribution.  

 
29 This subsection is adapted from David M. Lane. “Standard Normal Distribution.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/normal_distribution/standard_normal.html 

http://onlinestatbook.com/2/normal_distribution/standard_normal.html
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Chapter 6. Sampling Distributions 
Introduction to Sampling Distributions30 
Suppose you randomly sampled 10 people from the population of women in Houston, Texas, between 
the ages of 21 and 35 years and computed the mean height of your sample. You would not expect your 
sample mean to be equal to the mean of all women in Houston. It might be somewhat lower or it might 
be somewhat higher, but it would not equal the population mean exactly. Similarly, if you took a second 
sample of 10 people from the same population, you would not expect the mean of this second sample 
to equal the mean of the first sample. 

Recall that inferential statistics concern generalizing from a sample to a population. A critical part of 
inferential statistics involves determining how far sample statistics are likely to vary from each other and 
from the population parameter. (In this example, the sample statistics are the sample means and the 
population parameter is the population mean.) As the later portions of this chapter show, these 
determinations are based on sampling distributions.  

Discrete Distributions 
We will illustrate the concept of sampling distributions with a simple example. Figure 6-1 shows three 
pool balls, each with a number on it. Two of the balls are selected randomly (with replacement) and the 
average of their numbers is computed.  

 

Figure 6-1. The pool balls.  

All possible outcomes are shown below in Table 6-1. 

Table 6-1. All possible outcomes when two balls are sampled with replacement. 

Outcome Ball 1 Ball 2 Mean 
1 1 1 1.0 
2 1 2 1.5 
3 1 3 2.0 
4 2 1 1.5 
5 2 2 2.0 

 
30 This subsection is adapted from David M. Lane. “Introduction to Sampling Distributions.” Online Statistics 
Education: A Multimedia Course of Study. 
http://onlinestatbook.com/2/sampling_distributions/intro_samp_dist.html 

http://onlinestatbook.com/2/sampling_distributions/intro_samp_dist.html
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6 2 3 2.5 
7 3 1 2.0 
8 3 2 2.5 
9 3 3 3.0 

 

Notice that all the means are either 1.0, 1.5, 2.0, 2.5, or 3.0. The frequencies of these means are shown 
in Table 6-2. The relative frequencies are equal to the frequencies divided by nine because there are 
nine possible outcomes. 

Table 6-2. Frequencies of means for N = 2. 

Mean Frequency Relative Frequency 
1.0 1 0.111 
1.5 2 0.222 
2.0 3 0.333 
2.5 2 0.222 
3.0 1 0.111 

 

Figure 6-2 shows a relative frequency distribution of the means based on Table 6-2. This distribution is 
also a probability distribution since the Y-axis is the probability of obtaining a given mean from a sample 
of two balls in addition to being the relative frequency. 
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Figure 6-2. Distribution of means for N = 2. 

The distribution shown in Figure 6-2 is called the sampling distribution of the mean. Specifically, it is the 
sampling distribution of the mean for a sample size of 2 (N = 2). For this simple example, the distribution 
of pool balls and the sampling distribution are both discrete distributions. The pool balls have only the 
values 1, 2, and 3, and a sample mean can have one of only five values shown in Table 6-2. 

There is an alternative way of conceptualizing a sampling distribution that will be useful for more 
complex distributions. Imagine that two balls are sampled (with replacement) and the mean of the two 
balls is computed and recorded. Then this process is repeated for a second sample, a third sample, and 
eventually thousands of samples. After thousands of samples are taken and the mean computed for 
each, a relative frequency distribution is drawn. The more samples, the closer the relative frequency 
distribution will come to the sampling distribution shown in Figure 6-2. As the number of samples 
approaches infinity, the relative frequency distribution will approach the sampling distribution. This 
means that you can conceive of a sampling distribution as being a relative frequency distribution based 
on a very large number of samples. To be strictly correct, the relative frequency distribution approaches 
the sampling distribution as the number of samples approaches infinity. 

It is important to keep in mind that every statistic, not just the mean, has a sampling distribution. For 
example, Table 6-3 shows all possible outcomes for the range of two numbers (larger number minus the 
smaller number). Table 6-4 shows the frequencies for each of the possible ranges and Figure 6-3 shows 
the sampling distribution of the range. 

Table 6-3. All possible outcomes when two balls are sampled with replacement. 

Outcome Ball 1 Ball 2 Range 
1 1 1 0 
2 1 2 1 
3 1 3 2 
4 2 1 1 
5 2 2 0 
6 2 3 1 
7 3 1 2 
8 3 2 1 
9 3 3 0 

 

Table 6-4. Frequencies of ranges for N = 2. 

Range Frequency Relative Frequency 
0 3 0.333 
1 4 0.444 
2 2 0.222 

 



Chapter 6. Sampling Distributions 

Statistics Minus the Math – 2/16/2020 version  Page 69 

 

Figure 6-3. Distribution of ranges for N = 2. 

It is also important to keep in mind that there is a sampling distribution for various sample sizes. For 
simplicity, we have been using N = 2. The sampling distribution of the range for N = 3 is shown in Figure 
6-4. 
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Figure 6-4. Distribution of ranges for N = 3.  

Continuous Distributions 
In the previous section, the population consisted of three pool balls. Now we will consider sampling 
distributions when the population distribution is continuous. What if we had a thousand pool balls with 
numbers ranging from 0.001 to 1.000 in equal steps? (Although this distribution is not really continuous, 
it is close enough to be considered continuous for practical purposes.) As before, we are interested in 
the distribution of means we would get if we sampled two balls and computed the mean of these two 
balls. In the previous example, we started by computing the mean for each of the nine possible 
outcomes. This would get a bit tedious for this example since there are 1,000,000 possible outcomes 
(1,000 for the first ball x 1,000 for the second). Therefore, it is more convenient to use our second 
conceptualization of sampling distributions which conceives of sampling distributions in terms of relative 
frequency distributions. Specifically, the relative frequency distribution that would occur if samples of 
two balls were repeatedly taken and the mean of each sample computed.  

When we have a truly continuous distribution, it is not only impractical but actually impossible to 
enumerate all possible outcomes. Moreover, in continuous distributions, the probability of obtaining 
any single value is zero. Therefore, these values are called probability densities rather than probabilities. 

Sampling Distributions and Inferential Statistics 
As we stated in the beginning of this chapter, sampling distributions are important for inferential 
statistics. In the examples given so far, a population was specified and the sampling distribution of the 
mean and the range were determined. In practice, the process proceeds the other way: you collect 
sample data and from these data you estimate parameters of the sampling distribution. This knowledge 
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of the sampling distribution can be very useful. For example, knowing the degree to which means from 
different samples would differ from each other and from the population mean would give you a sense of 
how close your particular sample mean is likely to be to the population mean. Fortunately, this 
information is directly available from a sampling distribution. The most common measure of how much 
sample means differ from each other is the standard deviation of the sampling distribution of the mean. 
This standard deviation is called the standard error of the mean. If all the sample means were very close 
to the population mean, then the standard error of the mean would be small. On the other hand, if the 
sample means varied considerably, then the standard error of the mean would be large.  

To be specific, assume your sample mean were 125 and you estimated that the standard error of the 
mean were 5 (using a method shown in a later section). If you had a normal distribution, then it would 
be likely that your sample mean would be within 10 units of the population mean since most of a 
normal distribution is within two standard deviations of the mean.  

Keep in mind that all statistics have sampling distributions, not just the mean. In later sections we will be 
discussing the sampling distribution of the variance, the sampling distribution of the difference between 
means, and the sampling distribution of Pearson's correlation, among others. 

Sampling Distribution of the Mean31 
The sampling distribution of the mean was defined in the section introducing sampling distributions. 
This section reviews some important properties of the sampling distribution of the mean introduced in 
the demonstrations in this chapter.  

Mean 
The mean of the sampling distribution of the mean is the mean of the population from which the scores 
were sampled. Therefore, if a population has a mean μ, then the mean of the sampling distribution of 
the mean is also μ. The symbol μM is used to refer to the mean of the sampling distribution of the mean. 
Therefore, the formula for the mean of the sampling distribution of the mean can be written as: 

μM = μ 

Variance 
The variance of the sampling distribution of the mean is computed as follows: 

 

That is, the variance of the sampling distribution of the mean is the population variance divided by N, 
the sample size (the number of scores used to compute a mean).32 Thus, the larger the sample size, the 
smaller the variance of the sampling distribution of the mean. 

 
31 This subsection is adapted from David M. Lane. “Sampling Distribution of the Mean.” Online Statistics Education: 
A Multimedia Course of Study. http://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html 
32 This expression can be derived very easily from the variance sum law. Let's begin by computing the variance of 
the sampling distribution of the sum of three numbers sampled from a population with variance σ2. The variance 
of the sum would be σ2 + σ2 + σ2. For N numbers, the variance would be Nσ2. Since the mean is 1/N times the sum, 

http://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
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The standard error of the mean is the standard deviation of the sampling distribution of the mean. It is 
therefore the square root of the variance of the sampling distribution of the mean and can be written 
as: 

 

The standard error is represented by a σ because it is a standard deviation. The subscript (M) indicates 
that the standard error in question is the standard error of the mean. 

Central Limit Theorem 
The central limit theorem states that: 

Given a population with a finite mean μ and a finite non-zero variance σ2, the sampling 
distribution of the mean approaches a normal distribution with a mean of μ and a variance of 
σ2/N as N, the sample size, increases. 

The expressions for the mean and variance of the sampling distribution of the mean are not new or 
remarkable. What is remarkable is that regardless of the shape of the parent population, the sampling 
distribution of the mean approaches a normal distribution as N increases. Figure 6-5 shows the results of 
the simulation for N = 2 and N = 10. The parent population was a uniform distribution. You can see that 
the distribution for N = 2 is far from a normal distribution. Nonetheless, it does show that the scores are 
denser in the middle than in the tails. For N = 10 the distribution is quite close to a normal distribution. 
Notice that the means of the two distributions are the same, but that the spread of the distribution for 
N = 10 is smaller. 

  

 

 
the variance of the sampling distribution of the mean would be 1/N2 times the variance of the sum, which equals 
σ2/N. 
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Figure 6-5. A simulation of a sampling distribution. The parent population is uniform. The blue line under 
"16" indicates that 16 is the mean. The red line extends from the mean plus and minus one standard 
deviation. 

Figure 6-6 shows how closely the sampling distribution of the mean approximates a normal distribution 
even when the parent population is very non-normal. If you look closely you can see that the sampling 
distributions do have a slight positive skew. The larger the sample size, the closer the sampling 
distribution of the mean would be to a normal distribution. 

 

Figure 6-6. A simulation of a sampling distribution. The parent population is very non-normal. 

Confidence Interval on the Mean33 
When you compute a confidence interval on the mean, you compute the mean of a sample in order to 
estimate the mean of the population. Clearly, if you already knew the population mean, there would be 
no need for a confidence interval. However, to explain how confidence intervals are constructed, we are 
going to work backwards and begin by assuming characteristics of the population. Then we will show 
how sample data can be used to construct a confidence interval. 

Assume that the weights of 10-year-old children are normally distributed with a mean of 90 and a 
standard deviation of 36. What is the sampling distribution of the mean for a sample size of 9? Recall 
from the section on the sampling distribution of the mean that the mean of the sampling distribution is 
μ and the standard error of the mean is  

 
33 This subsection is adapted from David M. Lane. “Confidence Interval on the Mean.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/estimation/mean.html 

http://onlinestatbook.com/2/estimation/mean.html
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For the present example, the sampling distribution of the mean has a mean of 90 and a standard 
deviation of 36/3 = 12. Note that the standard deviation of a sampling distribution is its standard error. 
Figure 6-7 shows this distribution. The shaded area represents the middle 95% of the distribution and 
stretches from 66.48 to 113.52. These limits were computed by adding and subtracting 1.96 standard 
deviations to/from the mean of 90 as follows: 

90 - (1.96)(12) = 66.48 

90 + (1.96)(12) = 113.52 

The value of 1.96 is based on the fact that 95% of the area of a normal distribution is within 1.96 
standard deviations of the mean; 12 is the standard error of the mean. 

 

Figure 6-7. The sampling distribution of the mean for N=9. The middle 95% of the distribution is shaded.  

Figure 6-7 shows that 95% of the means are no more than 23.52 units (1.96 standard deviations) from 
the mean of 90. Now consider the probability that a sample mean computed in a random sample is 
within 23.52 units of the population mean of 90. Since 95% of the distribution is within 23.52 of 90, the 
probability that the mean from any given sample will be within 23.52 of 90 is 0.95. This means that if we 
repeatedly compute the mean (M) from a sample, and create an interval ranging from M - 23.52 to M + 
23.52, this interval will contain the population mean 95% of the time. In general, you compute the 95% 
confidence interval for the mean with the following formula: 

Lower limit = M - Z.95σM 

Upper limit = M + Z.95σM 

where Z.95 is the number of standard deviations extending from the mean of a normal distribution 
required to contain 0.95 of the area and σM is the standard error of the mean. 

If you look closely at this formula for a confidence interval, you will notice that you need to know the 
standard deviation (σ) in order to estimate the mean. This may sound unrealistic, and it is. However, 
computing a confidence interval when σ is known is easier than when σ has to be estimated, and serves 
a pedagogical purpose. Later in this section we will show how to compute a confidence interval for the 
mean when σ has to be estimated. 
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Suppose the following five numbers were sampled from a normal distribution with a standard deviation 
of 2.5: 2, 3, 5, 6, and 9. To compute the 95% confidence interval, start by computing the mean and 
standard error: 

M = (2 + 3 + 5 + 6 + 9)/5 = 5. 

σM =  
 

= 1.118.  

Z.95 can be found using the normal distribution calculator34 and specifying that the shaded area is 0.95 
and indicating that you want the area to be between the cutoff points. As shown in Figure 6-8, the value 
is 1.96. If you had wanted to compute the 99% confidence interval, you would have set the shaded area 
to 0.99 and the result would have been 2.58. 

 

Figure 6-8. 95% of the area is between -1.96 and 1.96. 

The confidence interval can then be computed as follows: 

Lower limit = 5 - (1.96)(1.118)= 2.81 

Upper limit = 5 + (1.96)(1.118)= 7.19 

You should use the t distribution rather than the normal distribution when the variance is not known 
and has to be estimated from sample data. You will learn more about the t distribution in the next 

 
34 http://onlinestatbook.com/2/calculators/normal_dist.html 

http://onlinestatbook.com/2/calculators/normal_dist.html
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section. When the sample size is large, say 100 or above, the t distribution is very similar to the standard 
normal distribution. However, with smaller sample sizes, the t distribution has relatively more scores in 
its tails than does the normal distribution. As a result, you have to extend farther from the mean to 
contain a given proportion of the area. Recall that with a normal distribution, 95% of the distribution is 
within 1.96 standard deviations of the mean. Using the t distribution, if you have a sample size of only 5, 
95% of the area is within 2.78 standard deviations of the mean. Therefore, the standard error of the 
mean would be multiplied by 2.78 rather than 1.96. 

The values of t to be used in a confidence interval can be looked up in a table of the t distribution. A 
small version of such a table is shown in Table 6-5. The first column, df, stands for degrees of freedom, 
and for confidence intervals on the mean, df is equal to N - 1, where N is the sample size.  

Table 6-5. Abbreviated t table. 

df 0.95 0.99 
2 4.303 9.925 
3 3.182 5.841 
4 2.776 4.604 
5 2.571 4.032 
8 2.306 3.355 

10 2.228 3.169 
20 2.086 2.845 
50 2.009 2.678 

100 1.984 2.626 
 

You can also use an "inverse t distribution" calculator35 to find the t values to use in confidence intervals. 

Assume that the following five numbers are sampled from a normal distribution: 2, 3, 5, 6, and 9 and 
that the standard deviation is not known. The first steps are to compute the sample mean and variance: 

M = 5 

s2 = 7.5 

The next step is to estimate the standard error of the mean. If we knew the population variance, we 
could use the following formula: 

 

Instead we compute an estimate of the standard error (sM): 

 
= 1.225 

 
35 http://onlinestatbook.com/2/calculators/inverse_t_dist.html 
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The next step is to find the value of t. As you can see from Table 6-5, the value for the 95% interval for df 
= N - 1 = 4 is 2.776. The confidence interval is then computed just as it is when σM. The only differences 
are that sM and t rather than σM and Z are used. 

Lower limit = 5 - (2.776)(1.225) = 1.60 

Upper limit = 5 + (2.776)(1.225) = 8.40 

More generally, the formula for the 95% confidence interval on the mean is: 

Lower limit = M - (tCL)(sM) 

Upper limit = M + (tCL)(sM) 

where M is the sample mean, tCL is the t for the confidence level desired (0.95 in the above example), 
and sM is the estimated standard error of the mean. 

We will finish with an analysis of the Stroop Data.36 Specifically, we will compute a confidence interval 
on the mean difference score. Recall that 47 subjects named the color of ink that words were written in. 
The names conflicted so that, for example, they would name the ink color of the word "blue" written in 
red ink. The correct response is to say "red" and ignore the fact that the word is "blue." In a second 
condition, subjects named the ink color of colored rectangles. 

Table 6-6. Response times in seconds for 10 subjects. 

Naming Colored Rectangle Interference Difference 
17 38 21 
15 58 43 
18 35 17 
20 39 19 
18 33 15 
20 32 12 
20 45 25 
19 52 33 
17 31 14 
21 29 8 

 

Table 6-6 shows the time difference between the interference and color-naming conditions for 10 of the 
47 subjects. The mean time difference for all 47 subjects is 16.362 seconds and the standard deviation is 
7.470 seconds. The standard error of the mean is 1.090. A t table shows the critical value of t for 47 - 1 = 
46 degrees of freedom is 2.013 (for a 95% confidence interval). Therefore the confidence interval is 
computed as follows: 

Lower limit = 16.362 - (2.013)(1.090) = 14.17 

 
36 http://onlinestatbook.com/2/case_studies/stroop.html 
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Upper limit = 16.362 + (2.013)(1.090) = 18.56 

Therefore, the interference effect (difference) for the whole population is likely to be between 14.17 
and 18.56 seconds. 

The T Distribution37 
In the introduction to normal distributions it was shown that 95% of the area of a normal distribution is 
within 1.96 standard deviations of the mean. Therefore, if you randomly sampled a value from a normal 
distribution with a mean of 100, the probability it would be within 1.96σ of 100 is 0.95. Similarly, if you 
sample N values from the population, the probability that the sample mean (M) will be within 1.96 σM of 
100 is 0.95. 

Now consider the case in which you have a normal distribution but you do not know the standard 
deviation. You sample N values and compute the sample mean (M) and estimate the standard error of 
the mean (σM) with sM. What is the probability that M will be within 1.96 sM of the population mean (μ)? 
This is a difficult problem because there are two ways in which M could be more than 1.96 sM from μ: (1) 
M could, by chance, be either very high or very low and (2) sM could, by chance, be very low. Intuitively, 
it makes sense that the probability of being within 1.96 standard errors of the mean should be smaller 
than in the case when the standard deviation is known (and cannot be underestimated). But exactly how 
much smaller? Fortunately, the way to work out this type of problem was solved in the early 20th 
century by W. S. Gosset who determined the distribution of a mean divided by an estimate of its 
standard error. This distribution is called the Student's t distribution or sometimes just the t distribution. 
Gosset worked out the t distribution and associated statistical tests while working for a brewery in 
Ireland. Because of a contractual agreement with the brewery, he published the article under the 
pseudonym "Student." That is why the t test is called the "Student's t test." 

The t distribution is very similar to the normal distribution when the estimate of variance is based on a 
large sample, but the t distribution has relatively more scores in its tails when there is a small sample. 
When working with the t distribution, sample size is expressed in what are called degrees of freedom. 
Degrees of freedom will be discussed in more detail at the end of this chapter, but if we are estimating 
the standard error for a sample mean estimate, the degrees of freedom is simply equal to the sample 
size minus one (N-1). 

Figure 6-9 shows t distributions with 2, 4, and 10 degrees of freedom and the standard normal 
distribution. Notice that the normal distribution has relatively more scores in the center of the 
distribution and the t distribution has relatively more in the tails. The t distribution approaches the 
normal distribution as the degrees of freedom increase. 

 
37 This section is adapted from David M. Lane. “t Distribution.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/estimation/t_distribution.html 
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Figure 6-9. A comparison of t distributions with 2, 4, and 10 df and the standard normal distribution. The 
distribution with the lowest peak is the 2 df distribution, the next lowest is 4 df, the lowest after that is 
10 df, and the highest is the standard normal distribution. 

Since the t distribution has more area in the tails, the percentage of the distribution within 1.96 
standard deviations of the mean is less than the 95% for the normal distribution. Table 6-7 shows the 
number of standard deviations from the mean required to contain 95% and 99% of the area of the t 
distribution for various degrees of freedom. These are the values of t that you use in a confidence 
interval. The corresponding values for the normal distribution are 1.96 and 2.58 respectively. Notice that 
with few degrees of freedom, the values of t are much higher than the corresponding values for a 
normal distribution and that the difference decreases as the degrees of freedom increase. The values 
shown in Table 6-7 can be obtained from statistical software or an online calculator.38  

Table 6-7. Abbreviated t table. 

df 0.95 0.99 
2 4.303 9.925 
3 3.182 5.841 
4 2.776 4.604 
5 2.571 4.032 
8 2.306 3.355 

10 2.228 3.169 
20 2.086 2.845 

 
38 http://onlinestatbook.com/2/calculators/inverse_t_dist.html 
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50 2.009 2.678 
100 1.984 2.626 
 

Returning to the problem posed at the beginning of this section, suppose you sampled 9 values from a 
normal population and estimated the standard error of the mean (σM) with sM. What is the probability 
that M would be within 1.96sM of μ? Since the sample size is 9, there are N - 1 = 8 df. From Table 6-7 you 
can see that with 8 df the probability is 0.95 that the mean will be within 2.306 sM of μ. The probability 
that it will be within 1.96 sM of μ is therefore lower than 0.95. 

As shown in Figure 6-10, a t distribution calculator39 can be used to find that 0.086 of the area of a t 
distribution is more than 1.96 standard deviations from the mean, so the probability that M would be 
less than 1.96sM from μ is 1 - 0.086 = 0.914.  

 

Figure 6-10. Area more than 1.96 standard deviations from the mean in a t distribution with 8 df. Note 
that the two-tailed button is selected so that the area in both tails will be included. 

As expected, this probability is less than 0.95 that would have been obtained if σM had been known 
instead of estimated. 

 
39 http://onlinestatbook.com/2/calculators/t_dist.html 
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Degrees of Freedom40 
Some estimates are based on more information than others. For example, an estimate of the variance 
based on a sample size of 100 is based on more information than an estimate of the variance based on a 
sample size of 5. The degrees of freedom (df) of an estimate is the number of independent pieces of 
information on which the estimate is based. 

As an example, let's say that we know that the mean height of Martians is 6 and wish to estimate the 
variance of their heights. We randomly sample one Martian and find that its height is 8. Recall that the 
variance is defined as the mean squared deviation of the values from their population mean. We can 
compute the squared deviation of our value of 8 from the population mean of 6 to find a single squared 
deviation from the mean. This single squared deviation from the mean, (8-6)2 = 4, is an estimate of the 
mean squared deviation for all Martians. Therefore, based on this sample of one, we would estimate 
that the population variance is 4. This estimate is based on a single piece of information and therefore 
has 1 df. If we sampled another Martian and obtained a height of 5, then we could compute a second 
estimate of the variance, (5-6)2 = 1. We could then average our two estimates (4 and 1) to obtain an 
estimate of 2.5. Since this estimate is based on two independent pieces of information, it has two 
degrees of freedom. The two estimates are independent because they are based on two independently 
and randomly selected Martians. The estimates would not be independent if after sampling one 
Martian, we decided to choose its brother as our second Martian. 

As you are probably thinking, it is pretty rare that we know the population mean when we are 
estimating the variance. Instead, we have to first estimate the population mean (μ) with the sample 
mean (M). The process of estimating the mean affects our degrees of freedom as shown below. 

Returning to our problem of estimating the variance in Martian heights, let's assume we do not know 
the population mean and therefore we have to estimate it from the sample. We have sampled two 
Martians and found that their heights are 8 and 5. Therefore M, our estimate of the population mean, is  

M = (8+5)/2 = 6.5.  

We can now compute two estimates of variance: 

Estimate 1 = (8-6.5)2 = 2.25 

Estimate 2 = (5-6.5)2 = 2.25 

Now for the key question: Are these two estimates independent? The answer is no because each height 
contributed to the calculation of M. Since the first Martian's height of 8 influenced M, it also influenced 
Estimate 2. If the first height had been, for example, 10, then M would have been 7.5 and Estimate 2 
would have been (5-7.5)2 = 6.25 instead of 2.25. The important point is that the two estimates are not 
independent and therefore we do not have two degrees of freedom. Another way to think about the 
non-independence is to consider that if you knew the mean and one of the scores, you would know the 
other score. For example, if one score is 5 and the mean is 6.5, you can compute that the total of the 
two scores is 13 and therefore that the other score must be 13-5 = 8. 

 
40 This section is adapted from David M. Lane. “Degrees of Freedom.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/estimation/df.html 
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In general, the degrees of freedom for an estimate is equal to the number of values minus the number 
of parameters estimated en route to the estimate in question. In the Martians example, there are two 
values (8 and 5) and we had to estimate one parameter (μ) on the way to estimating the parameter of 
interest (σ2). Therefore, the estimate of variance has 2 - 1 = 1 degree of freedom. If we had sampled 12 
Martians, then our estimate of variance would have had 11 degrees of freedom. Therefore, the degrees 
of freedom of an estimate of variance is equal to N - 1, where N is the number of observations. 

Recall from the section on variability that the formula for estimating the variance in a sample is: 

 

The denominator of this formula is the degrees of freedom. 

So far, we’ve only seen examples where the degrees of freedom is equal to N - 1. But in later chapters, 
we’ll see examples of statistical inference tools that require estimating more than one parameter en 
route to the estimate in question, and therefore we’ll need to subtract more than one from the number 
of observations to get the degrees of freedom. For example, the degrees of freedom might be calculated 
as N - 5 or N - 3, depending on what we are estimating.  
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Chapter 7. Hypothesis Testing 
Introduction to Hypothesis Testing41 
The statistician R. Fisher explained the concept of hypothesis testing with a story of a lady tasting tea. 
Here we will present an example based on James Bond who insisted that martinis should be shaken 
rather than stirred. Let's consider a hypothetical experiment to determine whether Mr. Bond can tell the 
difference between a shaken and a stirred martini. Suppose we gave Mr. Bond a series of 16 taste tests. 
In each test, we flipped a fair coin to determine whether to stir or shake the martini. Then we presented 
the martini to Mr. Bond and asked him to decide whether it was shaken or stirred. Let's say Mr. Bond 
was correct on 13 of the 16 taste tests. Does this prove that Mr. Bond has at least some ability to tell 
whether the martini was shaken or stirred? 

This result does not prove that he does; it could be he was just lucky and guessed right 13 out of 16 
times. But how plausible is the explanation that he was just lucky? To assess its plausibility, we 
determine the probability that someone who was just guessing would be correct 13/16 times or more. 
This probability can be computed from the binomial distribution, and a binomial distribution calculator42 
shows it to be 0.0106. This is a pretty low probability, and therefore someone would have to be very 
lucky to be correct 13 or more times out of 16 if they were just guessing. So either Mr. Bond was very 
lucky, or he can tell whether the drink was shaken or stirred. The hypothesis that he was guessing is not 
proven false, but considerable doubt is cast on it. Therefore, there is strong evidence that Mr. Bond can 
tell whether a drink was shaken or stirred. 

Let's consider another example. The case study Physicians' Reactions43 sought to determine whether 
physicians spend less time with obese patients. Physicians were sampled randomly and each was shown 
a chart of a patient complaining of a migraine headache. They were then asked to estimate how long 
they would spend with the patient. The charts were identical except that for half the charts, the patient 
was obese and for the other half, the patient was of average weight. The chart a particular physician 
viewed was determined randomly. Thirty-three physicians viewed charts of average-weight patients and 
38 physicians viewed charts of obese patients.  

The mean time physicians reported that they would spend with obese patients was 24.7 minutes as 
compared to a mean of 31.4 minutes for average-weight patients. How might this difference between 
means have occurred? One possibility is that physicians were influenced by the weight of the patients. 
On the other hand, perhaps by chance, the physicians who viewed charts of the obese patients tend to 
see patients for less time than the other physicians. Random assignment of charts does not ensure that 
the groups will be equal in all respects other than the chart they viewed. In fact, it is certain the two 
groups differed in many ways by chance. The two groups could not have exactly the same mean age (if 
measured precisely enough such as in days). Perhaps a physician's age affects how long physicians see 
patients. There are innumerable differences between the groups that could affect how long they view 
patients. With this in mind, is it plausible that these chance differences are responsible for the 
difference in times? 

 
41 This section is adapted from David M. Lane. “Introduction.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/logic_of_hypothesis_testing/intro.html 
42 http://onlinestatbook.com/2/calculators/binomial_dist.html 
43 http://onlinestatbook.com/2/case_studies/weight.html 
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To assess the plausibility of the hypothesis that the difference in mean times is due to chance, we 
compute the probability of getting a difference as large or larger than the observed difference (31.4 - 
24.7 = 6.7 minutes) if the difference were, in fact, due solely to chance. Using methods presented in a 
later chapter, this probability can be computed to be 0.0057. Since this is such a low probability, we 
have confidence that the difference in times is due to the patient's weight and is not due to chance. 

The Probability Value 
It is very important to understand precisely what the probability values mean. In the James Bond 
example, the computed probability of 0.0106 is the probability he would be correct on 13 or more taste 
tests (out of 16) if he were just guessing. 

It is easy to mistake this probability of 0.0106 as the probability he cannot tell the difference. This is not 
at all what it means.  

The probability of 0.0106 is the probability of a certain outcome (13 or more out of 16) assuming a 
certain state of the world (James Bond was only guessing). It is not the probability that a state of the 
world is true. Although this might seem like a distinction without a difference, consider the following 
example. An animal trainer claims that a trained bird can determine whether or not numbers are evenly 
divisible by 7. In an experiment assessing this claim, the bird is given a series of 16 test trials. On each 
trial, a number is displayed on a screen and the bird pecks at one of two keys to indicate its choice. The 
numbers are chosen in such a way that the probability of any number being evenly divisible by 7 is 0.50. 
The bird is correct on 9/16 choices. Using the binomial calculator, we can compute that the probability 
of being correct nine or more times out of 16 if one is only guessing is 0.40. Since a bird who is only 
guessing would do this well 40% of the time, these data do not provide convincing evidence that the 
bird can tell the difference between the two types of numbers. As a scientist, you would be very 
skeptical that the bird had this ability. Would you conclude that there is a 0.40 probability that the bird 
can tell the difference? Certainly not! You would think the probability is much lower than 0.0001. 

To reiterate, the probability value (p value) is the probability of an outcome (9/16 or better) and not the 
probability of a particular state of the world (the bird was only guessing). In statistics, it is conventional 
to refer to possible states of the world as hypotheses since they are hypothesized states of the world. 
Using this terminology, the probability value is the probability of an outcome given the hypothesis. It is 
not the probability of the hypothesis given the outcome. 

This is not to say that we ignore the probability of the hypothesis. If the probability of the outcome given 
the hypothesis is sufficiently low, we have evidence that the hypothesis is false. However, we do not 
compute the probability that the hypothesis is false. In the James Bond example, the hypothesis is that 
he cannot tell the difference between shaken and stirred martinis. The probability value is low (0.0106), 
thus providing evidence that he can tell the difference. However, we have not computed the probability 
that he can tell the difference. A branch of statistics called Bayesian statistics provides methods for 
computing the probabilities of hypotheses. These computations require that one specify the probability 
of the hypothesis before the data are considered and, therefore, are difficult to apply in some contexts. 

The Null Hypothesis  
The hypothesis that an apparent effect is due to chance is called the null hypothesis. In the Physicians' 
Reactions example, the null hypothesis is that in the population of physicians, the mean time expected 
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to be spent with obese patients is equal to the mean time expected to be spent with average-weight 
patients. This null hypothesis can be written as: 

μobese= μaverage 

or as  

μobese- μaverage= 0. 

The null hypothesis in a correlational study of the relationship between high school grades and college 
grades would typically be that the population correlation is 0. This can be written as 

ρ = 0 

where ρ is the population correlation (not to be confused with r, the correlation in the sample).  

Although the null hypothesis is usually that the value of a population parameter is 0, there are occasions 
in which the null hypothesis is a value other than 0. For example, if one were testing whether a subject 
differed from chance in their ability to determine whether a flipped coin would come up heads or tails, 
the null hypothesis would be that π = 0.5.  

Keep in mind that the null hypothesis is typically the opposite of the researcher's hypothesis. In the 
Physicians' Reactions study, the researchers hypothesized that physicians would expect to spend less 
time with obese patients. The null hypothesis that the two types of patients are treated identically is put 
forward with the hope that it can be discredited and therefore rejected. If the null hypothesis were true, 
a difference as large or larger than the sample difference of 6.7 minutes would be very unlikely to occur. 
Therefore, the researchers rejected the null hypothesis of no difference and concluded that in the 
population, physicians intend to spend less time with obese patients.  

If the null hypothesis is rejected, then the alternative to the null hypothesis (called the alternative 
hypothesis) is accepted. The alternative hypothesis is simply the reverse of the null hypothesis. If the 
null hypothesis  

μobese = μaverage 

is rejected, then there are two alternatives: 

μobese < μaverage 

μobese > μaverage. 

Naturally, the direction of the sample means determines which alternative is adopted. Some textbooks 
have incorrectly argued that rejecting the null hypothesis that two population means are equal does not 
justify a conclusion about which population mean is larger. Kaiser (1960)44 showed how it is justified to 
draw a conclusion about the direction of the difference. 

 
44 Kaiser, H. F. (1960) Directional statistical decisions. Psychological Review, 67, 160-167. 
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Steps in Hypothesis Testing45 
There’s much to learn about hypothesis testing, but before going any further, here’s an overview of the 
four basic steps of any hypothesis test. Some of the details won’t make sense yet, but we’ll explain them 
in more detail in the following sections. 

1. The first step is to specify the null hypothesis. For a two-tailed test, the null hypothesis is 
typically that a parameter equals zero although there are exceptions. A typical null hypothesis is 
μ1 - μ2 = 0 which is equivalent to μ1 = μ2. For a one-tailed test, the null hypothesis is either that a 
parameter is greater than or equal to zero or that a parameter is less than or equal to zero. If 
the prediction is that μ1 is larger than μ2, then the null hypothesis (the reverse of the prediction) 
is μ2 - μ1 ≥ 0. This is equivalent to μ1 ≤ μ2.  

2. The second step is to specify the α level which is also known as the significance level. Typical 
values are 0.05 and 0.01.  

3. The third step is to compute the probability value (also known as the p value). This is the 
probability of obtaining a sample statistic as different or more different from the parameter 
specified in the null hypothesis given that the null hypothesis is true. 

4. Finally, compare the probability value with the α level. If the probability value is lower then you 
reject the null hypothesis. Keep in mind that rejecting the null hypothesis is not an all-or-none 
decision. The lower the probability value, the more confidence you can have that the null 
hypothesis is false. However, if your probability value is higher than the conventional α level of 
0.05, most scientists will consider your findings inconclusive. Failure to reject the null hypothesis 
does not constitute support for the null hypothesis. It just means you do not have sufficiently 
strong data to reject it.  

One- and Two-Tailed Tests46 
In the James Bond case study,47 Mr. Bond was given 16 trials on which he judged whether a martini had 
been shaken or stirred. He was correct on 13 of the trials. From the binomial distribution, we know that 
the probability of being correct 13 or more times out of 16 if one is only guessing is 0.0106. Figure 7-1 
shows a graph of the binomial distribution. The red bars show the values greater than or equal to 13. As 
you can see in the figure, the probabilities are calculated for the upper tail of the distribution. A 
probability calculated in only one tail of the distribution is called a "one-tailed probability."  

 
45 This section is adapted from David M. Lane. “Steps in Hypothesis Testing.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/logic_of_hypothesis_testing/steps.html 
46 This section is adapted from David M. Lane. “One- and Two-Tailed Tests.” Online Statistics Education: A 
Multimedia Course of Study. http://onlinestatbook.com/2/logic_of_hypothesis_testing/tails.html 
47 http://onlinestatbook.com/2/case_studies/bond.html 
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Figure 7-1. The binomial distribution. The upper (right-hand) tail is red.  

A slightly different question can be asked of the data: "What is the probability of getting a result as 
extreme or more extreme than the one observed?" Since the chance expectation is 8/16, a result of 
3/16 is equally as extreme as 13/16. Thus, to calculate this probability, we would consider both tails of 
the distribution. Since the binomial distribution is symmetric when π = 0.5, this probability is exactly 
double the probability of 0.0106 computed previously. Therefore, p = 0.0212. A probability calculated in 
both tails of a distribution is called a "two-tailed probability" (see Figure 7-2). 

 

Figure 7-2. The binomial distribution. Both tails are red.  

Should the one-tailed or the two-tailed probability be used to assess Mr. Bond's performance? That 
depends on the way the question is posed. If we are asking whether Mr. Bond can tell the difference 
between shaken or stirred martinis, then we would conclude he could if he performed either much 
better than chance or much worse than chance. If he performed much worse than chance, we would 
conclude that he can tell the difference, but he does not know which is which. Therefore, since we are 
going to reject the null hypothesis if Mr. Bond does either very well or very poorly, we will use a two-
tailed probability.  

On the other hand, if our question is whether Mr. Bond is better than chance at determining whether a 
martini is shaken or stirred, we would use a one-tailed probability. What would the one-tailed 
probability be if Mr. Bond were correct on only 3 of the 16 trials? Since the one-tailed probability is the 
probability of the right-hand tail, it would be the probability of getting 3 or more correct out of 16. This 
is a very high probability and the null hypothesis would not be rejected. 
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The null hypothesis for the two-tailed test is π = 0.5. By contrast, the null hypothesis for the one-tailed 
test is π ≤ 0.5. Accordingly, we reject the two-tailed hypothesis if the sample proportion deviates greatly 
from 0.5 in either direction. The one-tailed hypothesis is rejected only if the sample proportion is much 
greater than 0.5. The alternative hypothesis in the two-tailed test is π ≠ 0.5. In the one-tailed test it is π 
> 0.5.  

You should always decide whether you are going to use a one-tailed or a two-tailed probability before 
looking at the data. Statistical tests that compute one-tailed probabilities are called one-tailed tests; 
those that compute two-tailed probabilities are called two-tailed tests. Two-tailed tests are much more 
common than one-tailed tests in scientific research because an outcome signifying that something other 
than chance is operating is usually worth noting. One-tailed tests are appropriate when it is not 
important to distinguish between no effect and an effect in the unexpected direction. For example, 
consider an experiment designed to test the efficacy of a treatment for the common cold. The 
researcher would only be interested in whether the treatment was better than a placebo control. It 
would not be worth distinguishing between the case in which the treatment was worse than a placebo 
and the case in which it was the same because in both cases the drug would be worthless.  

Some have argued that a one-tailed test is justified whenever the researcher predicts the direction of an 
effect. The problem with this argument is that if the effect comes out strongly in the non-predicted 
direction, the researcher is not justified in concluding that the effect is not zero. Since this is unrealistic, 
one-tailed tests are usually viewed skeptically if justified on this basis alone.  

Significance Testing48 
A low probability value casts doubt on the null hypothesis. How low must the probability value be in 
order to conclude that the null hypothesis is false? Although there is clearly no right or wrong answer to 
this question, it is conventional to conclude the null hypothesis is false if the probability value is less 
than 0.05. More conservative researchers conclude the null hypothesis is false only if the probability 
value is less than 0.01. When a researcher concludes that the null hypothesis is false, the researcher is 
said to have rejected the null hypothesis. The probability value below which the null hypothesis is 
rejected is called the α (alpha) level or simply α. It is also called the significance level. 

When the null hypothesis is rejected, the effect is said to be statistically significant. For example, in the 
Physicians' Reactions case study,49 the probability value is 0.0057. Therefore, the effect of obesity is 
statistically significant and the null hypothesis that obesity makes no difference is rejected. It is very 
important to keep in mind that statistical significance means only that the null hypothesis of exactly no 
effect is rejected; it does not mean that the effect is important, which is what "significant" usually 
means. When an effect is significant, you can have confidence the effect is not exactly zero. Finding that 
an effect is significant does not tell you about how large or important the effect is. 

Do not confuse statistical significance with practical significance. A small effect can be highly 
significant if the sample size is large enough. 

 
48 This section is adapted from David M. Lane. “Significance Testing.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/logic_of_hypothesis_testing/significance.html 
49 http://onlinestatbook.com/2/case_studies/weight.html 

http://onlinestatbook.com/2/logic_of_hypothesis_testing/significance.html
http://onlinestatbook.com/2/case_studies/weight.html
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Why does the word "significant" in the phrase "statistically significant" mean something so different 
from other uses of the word? Interestingly, this is because the meaning of "significant" in everyday 
language has changed. It turns out that when the procedures for hypothesis testing were developed, 
something was "significant" if it signified something. Thus, finding that an effect is statistically significant 
signifies that the effect is real and not due to chance. Over the years, the meaning of "significant" 
changed, leading to the potential misinterpretation. 

There are two approaches (at least) to conducting significance tests. In one (favored by R. Fisher), a 
significance test is conducted and the probability value reflects the strength of the evidence against the 
null hypothesis. If the probability is below 0.01, the data provide strong evidence that the null 
hypothesis is false. If the probability value is below 0.05 but larger than 0.01, then the null hypothesis is 
typically rejected, but not with as much confidence as it would be if the probability value were below 
0.01. Probability values between 0.05 and 0.10 provide weak evidence against the null hypothesis and, 
by convention, are not considered low enough to justify rejecting it. Higher probabilities provide less 
evidence that the null hypothesis is false. 

The alternative approach (favored by the statisticians Neyman and Pearson) is to specify an α level 
before analyzing the data. If the data analysis results in a probability value below the α level, then the 
null hypothesis is rejected; if it is not, then the null hypothesis is not rejected. According to this 
perspective, if a result is significant, then it does not matter how significant it is. Moreover, if it is not 
significant, then it does not matter how close to being significant it is. Therefore, if the 0.05 level is being 
used, then probability values of 0.049 and 0.001 are treated identically. Similarly, probability values of 
0.06 and 0.34 are treated identically. 

The former approach (preferred by Fisher) is more suitable for scientific research and will be adopted 
here. The latter is more suitable for applications in which a yes/no decision must be made. For example, 
if a statistical analysis were undertaken to determine whether a machine in a manufacturing plant were 
malfunctioning, the statistical analysis would be used to determine whether or not the machine should 
be shut down for repair. The plant manager would be less interested in assessing the weight of the 
evidence than knowing what action should be taken. There is no need for an immediate decision in 
scientific research where a researcher may conclude that there is some evidence against the null 
hypothesis, but that more research is needed before a definitive conclusion can be drawn.  

Testing a Single Mean50 
The way we calculate the probability (p) value for a hypothesis test depends on what type of statement 
is made in our null hypothesis. Normally, statistical software will automatically compute a p value 
behind the scenes, but we still want to learn a bit about how the software comes up with this value. To 
illustrate what these calculations can look like, this section will focus on what to do if we want to test a 
null hypothesis stating that the population mean is equal to some hypothesized value. For example, 
suppose an experimenter wanted to know if people are influenced by a subliminal message and 
performed the following experiment. Each of nine subjects is presented with a series of 100 pairs of 
pictures. As a pair of pictures is presented, a subliminal message is presented suggesting the picture that 
the subject should choose. The question is whether the (population) mean number of times the 

 
50 This section is adapted from David M. Lane. “Testing a Single Mean.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/tests_of_means/single_mean.html 

http://onlinestatbook.com/2/tests_of_means/single_mean.html
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suggested picture is chosen is equal to 50. In other words, the null hypothesis is that the population 
mean (μ) is 50. The (hypothetical) data are shown in Table 7-1. The data in Table 7-1 have a sample 
mean (M) of 51. Thus the sample mean differs from the hypothesized population mean by 1. 

Table 7-1. Distribution of scores. 

Frequency  

45  

48  
49 

49  

51  

52  
53  

55  

57  
 

The significance test consists of computing the probability of a sample mean differing from μ by one (the 
difference between the hypothesized population mean and the sample mean) or more. The first step is 
to determine the sampling distribution of the mean. As we learned in the prior chapter, the mean and 
standard deviation of the sampling distribution of the mean are 

μM = μ 

and 

 

respectively. It is clear that μM = 50. In order to compute the standard deviation of the sampling 
distribution of the mean, we have to know the population standard deviation (σ). 

The current example was constructed to be one of the few instances in which the standard deviation is 
known. In practice, it is very unlikely that you would know σ and therefore you would use s, the sample 
estimate of σ. However, it is instructive to see how the probability is computed if σ is known before 
proceeding to see how it is calculated when σ is estimated. 

For the current example, if the null hypothesis is true, then based on the binomial distribution, one can 
compute that variance of the number correct is 

σ2 = Nπ(1-π) = 100(0.5)(1-0.5) = 25.  

Therefore, σ = 5. For a σ of 5 and an N of 9, the standard deviation of the sampling distribution of the 
mean is 5/3 = 1.667. Recall that the standard deviation of a sampling distribution is called the standard 
error. 
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To recap, we wish to know the probability of obtaining a sample mean of 51 or more when the sampling 
distribution of the mean has a mean of 50 and a standard deviation of 1.667. To compute this 
probability, we will make the assumption that the sampling distribution of the mean is normally 
distributed. We can then use a normal distribution calculator as shown in Figure 7-3. 

 

Figure 7-3. Probability of a sample mean being 51 or greater. 

Notice that the mean is set to 50, the standard deviation to 1.667, and the area above 51 is requested 
and shown to be 0.274. 

Therefore, the probability of obtaining a sample mean of 51 or larger is 0.274. Since a mean of 51 or 
higher is not unlikely under the assumption that the subliminal message has no effect, the effect is not 
significant and the null hypothesis is not rejected. 

The test conducted above was a one-tailed test because it computed the probability of a sample mean 
being one or more points higher than the hypothesized mean of 50 and the area computed was the area 
above 51. To test the two-tailed hypothesis, you would compute the probability of a sample mean 
differing by one or more in either direction from the hypothesized mean of 50. You would do so by 
computing the probability of a mean being less than or equal to 49 or greater than or equal to 51. 

The results from a normal distribution calculator are shown in Figure 7-4. 
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Figure 7-4. Probability of a sample mean being less than or equal to 49 or greater than or equal to 51. 

As you can see, the probability is 0.548 which, as expected, is twice the probability of 0.274 shown in 
Figure 7-3. 

Before normal calculators such as the one illustrated above were widely available, probability 
calculations were made based on the standard normal distribution. This was done by computing Z based 
on the formula 

 

where Z is the value on the standard normal distribution, M is the sample mean, μ is the hypothesized 
value of the mean, and σM is the standard error of the mean. For this example, Z = (51-50)/1.667 = 0.60. 
Use a normal calculator, with a mean of 0 and a standard deviation of 1, as shown below. 
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Figure 7-5. Calculation using the standardized normal distribution. 

Notice that the probability (the shaded area) is the same as previously calculated (for the one-tailed 
test). 

As noted, in real-world data analyses it is very rare that you would know σ and wish to estimate μ. 
Typically σ is not known and is estimated in a sample by s, and σM is estimated by sM. For our next 
example, we will consider the data in the "ADHD Treatment" case study.51 These data consist of the 
scores of 24 children with ADHD on a delay of gratification (DOG) task. Each child was tested under four 
dosage levels. Table 7-2 shows the data for the placebo (0 mg) and highest dosage level (0.6 mg) of 
methylphenidate. Of particular interest here is the column labeled "Diff" that shows the difference in 
performance between the 0.6 mg (D60) and the 0 mg (D0) conditions. These difference scores are 
positive for children who performed better in the 0.6 mg condition than in the control condition and 
negative for those who scored better in the control condition. If methylphenidate has a positive effect, 
then the mean difference score in the population will be positive. The null hypothesis is that the mean 
difference score in the population is 0. 

Table 7-2. DOG scores as a function of dosage. 

D0 D60 Diff 
57 62 5 
27 49 22 
32 30 -2 
31 34 3 

 
51 http://onlinestatbook.com/2/case_studies/adhd.html 

http://onlinestatbook.com/2/case_studies/adhd.html
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34 38 4 
38 36 -2 
71 77 6 
33 51 18 
34 45 11 
53 42 -11 
36 43 7 
42 57 15 
26 36 10 
52 58 6 
36 35 -1 
55 60 5 
36 33 -3 
42 49 7 
36 33 -3 
54 59 5 
34 35 1 
29 37 8 
33 45 12 
33 29 -4 
 

To test this null hypothesis, we compute t using a special case of the following formula: 

 

The special case of this formula applicable to testing a single mean is 

 

where t is the value we compute for the significance test, M is the sample mean, μ is the hypothesized 
value of the population mean, and sM is the estimated standard error of the mean. Notice the similarity 
of this formula to the formula for Z we saw before. 

In the previous example, we assumed that the scores were normally distributed. In this case, it is the 
population of difference scores that we assume to be normally distributed. 

The mean (M) of the N = 24 difference scores is 4.958, the hypothesized value of μ is 0, and the standard 
deviation (s) is 7.538. The estimate of the standard error of the mean is computed as: 
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Therefore, t = 4.96/1.54 = 3.22. The probability value for t depends on the degrees of freedom. The 
number of degrees of freedom is equal to N - 1 = 23. As shown below, a t distribution calculator finds 
that the probability of a t less than -3.22 or greater than 3.22 is only 0.0038. Therefore, if the drug had 
no effect, the probability of finding a difference between means as large or larger (in either direction) 
than the difference found is very low. Therefore the null hypothesis that the population mean difference 
score is zero can be rejected. The conclusion is that the population mean for the drug condition is higher 
than the population mean for the placebo condition.  

 

Figure 7-6. Calculation using the t distribution 

In order to conduct this hypothesis test, we made the following assumptions: 

1. Each value is sampled independently from each other value. 

2. The values are sampled from a normal distribution. 
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Type I and Type II Errors52 
In the Physicians' Reactions case study,53 the probability value associated with the significance test is 
0.0057. Therefore, the null hypothesis was rejected, and it was concluded that physicians intend to 
spend less time with obese patients. Despite the low probability value, it is possible that the null 
hypothesis of no true difference between obese and average-weight patients is true and that the large 
difference between sample means occurred by chance. If this is the case, then the conclusion that 
physicians intend to spend less time with obese patients is in error. This type of error is called a Type I 
error. More generally, a Type I error occurs when a significance test results in the rejection of a true null 
hypothesis. 

By one common convention, if the probability value is below 0.05, then the null hypothesis is rejected. 
Another convention, although slightly less common, is to reject the null hypothesis if the probability 
value is below 0.01. The threshold for rejecting the null hypothesis is called the α (alpha) level or simply 
α. It is also called the significance level. As discussed in the section on significance testing, it is better to 
interpret the probability value as an indication of the weight of evidence against the null hypothesis 
than as part of a decision rule for making a reject or do-not-reject decision. Therefore, keep in mind that 
rejecting the null hypothesis is not an all-or-nothing decision.  

The Type I error rate is affected by the α level: the lower the α level, the lower the Type I error rate. It 
might seem that α is the probability of a Type I error. However, this is not correct. Instead, α is the 
probability of a Type I error given that the null hypothesis is true. If the null hypothesis is false, then it is 
impossible to make a Type I error.  

The second type of error that can be made in significance testing is failing to reject a false null 
hypothesis. This kind of error is called a Type II error. Unlike a Type I error, a Type II error is not really an 
error. When a statistical test is not significant, it means that the data do not provide strong evidence 
that the null hypothesis is false. Lack of significance does not support the conclusion that the null 
hypothesis is true. Therefore, a researcher should not make the mistake of incorrectly concluding that 
the null hypothesis is true when a statistical test was not significant. Instead, the researcher should 
consider the test inconclusive. Contrast this with a Type I error in which the researcher erroneously 
concludes that the null hypothesis is false when, in fact, it is true. 

A Type II error can only occur if the null hypothesis is false. If the null hypothesis is false, then the 
probability of a Type II error is called β (beta). The probability of correctly rejecting a false null 
hypothesis equals 1- β and is called statistical power.  

 
52 This section is adapted from David M. Lane. “Type I and Type II Errors.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/logic_of_hypothesis_testing/errors.html 
53 http://onlinestatbook.com/2/case_studies/weight.html 

http://onlinestatbook.com/2/logic_of_hypothesis_testing/errors.html
http://onlinestatbook.com/2/case_studies/weight.html
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Chapter 8. Comparing Means (How a Qualitative Variable Relates to a 
Quantitative Variable) 
Difference between Two Means54 
It is much more common for a researcher to be interested in the difference between means than in the 
specific values of the means themselves. This section covers how to test for differences between means 
from two separate groups of subjects. 

We take as an example the data from the "Animal Research" case study.55 In this experiment, students 
rated (on a 7-point scale) whether they thought animal research is wrong. The sample sizes, means, and 
variances are shown separately for males and females in Table 8-1.  

Table 8-1. Means and Variances in Animal Research study. 

Group n Mean Variance 
Females 17 5.353 2.743 
Males 17 3.882 2.985 

 

As you can see, the females rated animal research as more wrong than did the males. This sample 
difference between the female mean of 5.35 and the male mean of 3.88 is 1.47. However, the gender 
difference in this particular sample is not very important. What is important is whether there is a 
difference in the population means.  

In order to test whether there is a difference between population means, we are going to make three 
assumptions: 

1. The two populations have the same variance. This assumption is called the assumption of 
homogeneity of variance. 

2. The populations are normally distributed. 

3. Each value is sampled independently from each other value. This assumption requires that each 
subject provide only one value. If a subject provides two scores, then the scores are not 
independent. 

One could look at these assumptions in much more detail, but suffice it to say that small-to-moderate 
violations of assumptions 1 and 2 do not make much difference. It is important not to violate 
assumption 3. 

We saw the following general formula for significance testing in the section on testing a single mean: 

 
54 This section is adapted from David M. Lane. “Difference between Two Means (Independent Groups).” Online 
Statistics Education: A Multimedia Course of Study. 
http://onlinestatbook.com/2/tests_of_means/difference_means.html 
55 http://onlinestatbook.com/2/case_studies/animal_research.html 

http://onlinestatbook.com/2/tests_of_means/difference_means.html
http://onlinestatbook.com/2/case_studies/animal_research.html


Chapter 8. Comparing Means (How a Qualitative Variable Relates to a Quantitative Variable) 

Statistics Minus the Math – 2/16/2020 version  Page 98 

 

In this case, our statistic is the difference between sample means and our hypothesized value is 0. The 
hypothesized value is the null hypothesis that the difference between population means is 0. 

We continue to use the data from the "Animal Research" case study and will compute a significance test 
on the difference between the mean score of the females and the mean score of the males. For this 
calculation, we will make the three assumptions specified above.  

The first step is to compute the statistic, which is simply the difference between means. 

M1 - M2 = 5.3529 - 3.8824 = 1.4705 

Since the hypothesized value is 0, we do not need to subtract it from the statistic. 

The next step is to compute the estimate of the standard error of the statistic. In this case, the statistic is 

the difference between means, so the estimated standard error of the statistic is ( ). Recall 
from the relevant section in the chapter on sampling distributions that the formula for the standard 
error of the difference between means is: 

 

In order to estimate this quantity, we estimate σ2 and use that estimate in place of σ2. Since we are 
assuming the two population variances are the same, we estimate this variance by averaging our two 
sample variances. Thus, our estimate of variance is computed using the following formula: 

 

where MSE is our estimate of σ2. In this example, 

MSE = (2.743 + 2.985)/2 = 2.864.  

Since n (the number of scores in each group) is 17, 

 
= 

 

= 

 

= 0.5805. 

The next step is to compute t by plugging these values into the formula: 

t = 1.4705/.5805 = 2.533. 

http://onlinestatbook.com/2/sampling_distributions/samplingdist_diff_means.html
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Finally, we compute the probability of getting a t as large or larger than 2.533 or as small or smaller than 
-2.533. To do this, we need to know the degrees of freedom. The degrees of freedom is the number of 
independent estimates of variance on which MSE is based. This is equal to (n1 - 1) + (n2 - 1), where n1 is 
the sample size of the first group and n2 is the sample size of the second group. For this example, n1 = n2 
= 17. When n1 = n2, it is conventional to use "n" to refer to the sample size of each group. Therefore, the 
degrees of freedom is 16 + 16 = 32. 

Once we have the degrees of freedom, we can use a t distribution calculator56 to find the probability. 
Figure 8-1 shows that the probability value for a two-tailed test is 0.0164. The two-tailed test is used 
when the null hypothesis can be rejected regardless of the direction of the effect. As shown in Figure 8-
1, it is the probability of a t < -2.533 or a t > 2.533. 

 

Figure 8-1. The two-tailed probability. 

The results of a one-tailed test are shown in Figure 8-2. As you can see, the probability value of 0.0082 is 
half the value for the two-tailed test. 

 
56 http://onlinestatbook.com/2/calculators/t_dist.html 

http://onlinestatbook.com/2/calculators/t_dist.html
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Figure 8-2. The one-tailed probability. 

Formatting Data for Computer Analysis 
Most computer programs that compute t tests require your data to be in a specific form. Consider the 
data in Table 8-2. 

Table 8-2. Example Data. 

Group 1 Group 2 
3 2 
4 6 
5 8 

 

Here there are two groups, each with three observations. To format these data for a computer program, 
you normally have to use two variables: the first specifies the group the subject is in and the second is 
the score itself. The reformatted version of the data in Table 8-2 is shown in Table 8-3. 

Table 8-3. Reformatted Data. 

G Y 
1 3 
1 4 
1 5 
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2 2 
2 6 
2 8 
 

Using statistical software, we’d find that the t value is -0.718, the df = 4, and p = 0.512. 

Pairwise Comparisons Among Multiple Means57 
Many experiments are designed to compare more than two conditions. We will take as an example the 
case study "Smiles and Leniency."58 In this study, the effect of different types of smiles on the leniency 
shown to a person was investigated. An obvious way to proceed would be to do a t test of the difference 
between each group mean and each of the other group means. This procedure would lead to the six 
comparisons shown in Table 8-4.  

Table 8-4. Six Comparisons among Means. 

false vs felt  

 
 

false vs miserable  

 
 

false vs neutral  

 

 

 
57 This section is adapted from David M. Lane. “All Pairwise Comparisons Among Means.” Online Statistics 
Education: A Multimedia Course of Study. http://onlinestatbook.com/2/tests_of_means/pairwise.html 
58 http://onlinestatbook.com/2/case_studies/leniency.html 

http://onlinestatbook.com/2/tests_of_means/pairwise.html
http://onlinestatbook.com/2/case_studies/leniency.html
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felt vs miserable  

 

 

felt vs neutral  

 

 

miserable vs neutral  

 

 

The problem with this approach is that if you did this analysis, you would have six chances to make a 
Type I error. Therefore, if you were using the 0.05 significance level, the probability that you would 
make a Type I error on at least one of these comparisons is greater than 0.05. The more means that are 
compared, the more the Type I error rate is inflated. Figure 8-3 shows the number of possible 
comparisons between pairs of means (pairwise comparisons) as a function of the number of means. If 
there are only two means, then only one comparison can be made. If there are 12 means, then there are 
66 possible comparisons. 
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Figure 8-3. Number of pairwise comparisons as a function of the number of means. 

Figure 8-4 shows the probability of a Type I error as a function of the number of means. As you can see, 
if you have an experiment with 12 means, the probability is about 0.70 that at least one of the 66 
comparisons among means would be significant even if all 12 population means were the same. 

 

Figure 8-4. Probability of a Type I error as a function of the number of means.  
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The Type I error rate can be controlled using a test called the Tukey Honestly Significant Difference test 
or Tukey HSD for short. The Tukey HSD test is one example of a multiple comparison test, but several 
alternatives are frequently used, such as the Bonferroni correction. Regardless of the exact method used 
for a multiple comparison test, the interpretation of results is similar. The Tukey HSD is based on a 
variation of the t distribution that takes into account the number of means being compared. This 
distribution is called the studentized range distribution.  

Normally, statistical software will make all the necessary calculations for you in the background. But to 
illustrate what sorts of calculations the software is relying on, let's return to the leniency study to see 
how to compute the Tukey HSD test. You will see that the computations are very similar to those of an 
independent-groups t test. The steps are outlined below: 

1. Compute the means and variances of each group. They are shown below. 

Condition Mean Variance 
False 5.37 3.34 
Felt 4.91 2.83 

Miserable 4.91 2.11 
Neutral 4.12 2.32 

 

2. Compute MSE, which is simply the mean of the variances. It is equal to 2.65. 

3. Compute 

 

for each pair of means, where Mi is one mean, Mj is the other mean, and n is the number of 
scores in each group. For these data, there are 34 observations per group. The value in the 
denominator is 0.279. 

4. Compute p for each comparison using a Studentized Range Calculator.59 The degrees of freedom 
is equal to the total number of observations minus the number of means. For this experiment, 
df = 136 - 4 = 132. 

The tests for these data are shown in Table 8-4. 

Table 8-4. Six Pairwise Comparisons. 

Comparison Mi-Mj Q p 
False - Felt 0.46 1.65 0.649 

False - Miserable 0.46 1.65 0.649 
False - Neutral 1.25 4.48 0.010 

 
59 http://onlinestatbook.com/2/calculators/studentized_range_dist.html 

http://onlinestatbook.com/2/calculators/studentized_range_dist.html
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Felt - Miserable 0.00 0.00 1.000 
Felt - Neutral 0.79 2.83 0.193 

Miserable - Neutral 0.79 2.83 0.193 
 

The only significant comparison is between the false smile and the neutral smile. 

It is not unusual to obtain results that on the surface appear paradoxical. For example, these results 
appear to indicate that (a) the false smile is the same as the miserable smile, (b) the miserable smile is 
the same as the neutral control, and (c) the false smile is different from the neutral control. This 
apparent contradiction is avoided if you are careful not to accept the null hypothesis when you fail to 
reject it. The finding that the false smile is not significantly different from the miserable smile does not 
mean that they are really the same. Rather it means that there is not convincing evidence that they are 
different. Similarly, the non-significant difference between the miserable smile and the control does not 
mean that they are the same. The proper conclusion is that the false smile is higher than the control and 
that the miserable smile is either (a) equal to the false smile, (b) equal to the control, or (c) somewhere 
in-between.  

The assumptions of the Tukey test are essentially the same as for an independent-groups t test: 
normality, homogeneity of variance, and independent observations. The test is quite robust to violations 
of normality. Violating homogeneity of variance can be more problematical than in the two-sample case 
since the MSE is based on data from all groups. The assumption of independence of observations is 
important and should not be violated. 

Computer Analysis 
For most computer programs, you should format your data the same way you do for an independent-
groups t test. The only difference is that if you have, say, four groups, you would code each group as 1, 
2, 3, or 4 rather than just 1 or 2. 

Tukey's Test Need Not be a Follow-Up to ANOVA 
Some textbooks introduce the Tukey test only as a follow-up to an analysis of variance. There is no 
logical or statistical reason why you should not use the Tukey test even if you do not compute an 
ANOVA (or even know what one is). If you or your instructor do not wish to take our word for this, see 
the excellent article on this and other issues in statistical analysis by Leland Wilkinson and the APA 
Board of Scientific Affairs' Task Force on Statistical Inference, published in the American Psychologist, 
August 1999, Vol. 54, No. 8, 594–604. 

Analysis of Variance (ANOVA)60 
Analysis of Variance (ANOVA) is a statistical method used to test differences between two or more 
means. It may seem odd that the technique is called "Analysis of Variance" rather than "Analysis of 
Means." As you will see, the name is appropriate because inferences about means are made by 
analyzing variance.  

 
60 This section is adapted from David M. Lane. “Introduction.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/analysis_of_variance/intro.html 
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ANOVA is used to test general rather than specific differences among means. This can be seen best by 
example. In the case study "Smiles and Leniency,"61 the effect of different types of smiles on the 
leniency shown to a person was investigated. Four different types of smiles (neutral, false, felt, 
miserable) were investigated. In the prior section, we learned how to test differences among means. 
The results from the Tukey HSD test are shown in Table 8-5. 

Table 8-5. Six Pairwise Comparisons. 

Comparison Mi-Mj Q p 
False - Felt 0.46 1.65 0.649 

False - Miserable 0.46 1.65 0.649 
False - Neutral 1.25 4.48 0.010 

Felt - Miserable 0.00 0.00 1.000 
Felt - Neutral 0.79 2.83 0.193 

Miserable - Neutral 0.79 2.83 0.193 
 

Notice that the only significant difference is between the False and Neutral conditions.  

ANOVA tests the non-specific null hypothesis that all four population means are equal. That is,  

μfalse = μfelt = μmiserable = μneutral. 

This non-specific null hypothesis is sometimes called the omnibus null hypothesis. When the omnibus 
null hypothesis is rejected, the conclusion is that at least one population mean is different from at least 
one other mean. However, since the ANOVA does not reveal which means are different from which, it 
offers less specific information than the Tukey HSD test. The Tukey HSD is therefore preferable to 
ANOVA in this situation. Some textbooks introduce the Tukey test only as a follow-up to an ANOVA. 
However, there is no logical or statistical reason why you should not use the Tukey test even if you do 
not compute an ANOVA.  

You might be wondering why you should learn about ANOVA when the Tukey test is better. One reason 
is that there are complex types of analyses that can be done with ANOVA and not with the Tukey test. A 
second is that ANOVA is by far the most commonly-used technique for comparing means, and it is 
important to understand ANOVA in order to understand research reports.  

 
61 http://onlinestatbook.com/2/case_studies/leniency.html 
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Chapter 9. Comparing Groups (How Two Qualitative Variables Relate to 
One Another) 
Chi Square Distribution62 
A standard normal deviate is a random sample from the standard normal distribution. The Chi Square 
distribution is the distribution of the sum of squared standard normal deviates. The degrees of freedom 
of the distribution is equal to the number of standard normal deviates being summed. Therefore, Chi 
Square with one degree of freedom, written as χ2(1), is simply the distribution of a single normal deviate 
squared. The area of a Chi Square distribution below 4 is the same as the area of a standard normal 
distribution below 2, since 4 is 22.  

Consider the following problem: you sample two scores from a standard normal distribution, square 
each score, and sum the squares. What is the probability that the sum of these two squares will be six or 
higher? Since two scores are sampled, the answer can be found using the Chi Square distribution with 
two degrees of freedom. A Chi Square calculator can be used to find that the probability of a Chi Square 
(with 2 df) being six or higher is 0.050.  

The mean of a Chi Square distribution is its degrees of freedom. Chi Square distributions are positively 
skewed, with the degree of skew decreasing with increasing degrees of freedom. As the degrees of 
freedom increases, the Chi Square distribution approaches a normal distribution. Figure 9-1 shows 
density functions for three Chi Square distributions. Notice how the skew decreases as the degrees of 
freedom increases.  

 
62 This section is adapted from David M. Lane. “Chi Square Distribution.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/chi_square/distribution.html 
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Figure 9-1. Chi Square distributions with 2, 4, and 6 degrees of freedom. 

The Chi Square distribution is very important because many test statistics are approximately distributed 
as Chi Square. Two of the more common tests using the Chi Square distribution are tests of deviations of 
differences between theoretically expected and observed frequencies (one-way tables) and the 
relationship between categorical variables (contingency tables). Numerous other tests beyond the scope 
of this work are based on the Chi Square distribution.  

One-Way Tables63 
The Chi Square distribution can be used to test whether observed data differ significantly from 
theoretical expectations. For example, for a fair six-sided die, the probability of any given outcome on a 

 
63 This section is adapted from David M. Lane. “One-Way Tables (Testing Goodness of Fit).” Online Statistics 
Education: A Multimedia Course of Study. http://onlinestatbook.com/2/chi_square/one-way.html 
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single roll would be 1/6. The data in Table 9-1 were obtained by rolling a six-sided die 36 times. 
However, as can be seen in Table 9-1, some outcomes occurred more frequently than others. For 
example, a "3" came up nine times, whereas a "4" came up only two times. Are these data consistent 
with the hypothesis that the die is a fair die? Naturally, we do not expect the sample frequencies of the 
six possible outcomes to be the same since chance differences will occur. So, the finding that the 
frequencies differ does not mean that the die is not fair. One way to test whether the die is fair is to 
conduct a significance (hypothesis) test. The null hypothesis is that the die is fair. This hypothesis is 
tested by computing the probability of obtaining frequencies as discrepant or more discrepant from a 
uniform distribution of frequencies as obtained in the sample. If this probability is sufficiently low, then 
the null hypothesis that the die is fair can be rejected.  

Table 9-1. Outcome Frequencies from a Six-Sided Die. 

Outcome Frequency 
1 8 
2 5 
3 9 
4 2 
5 7 
6 5 

 

The first step in conducting the significance test is to compute the expected frequency for each outcome 
given that the null hypothesis is true. For example, the expected frequency of a "1" is 6 since the 
probability of a "1" coming up is 1/6 and there were a total of 36 rolls of the die.  

Expected frequency = (1/6)(36) = 6  

Note that the expected frequencies are expected only in a theoretical sense. We do not really "expect" 
the observed frequencies to match the "expected frequencies" exactly.  

The calculation continues as follows. Letting E be the expected frequency of an outcome and O be the 
observed frequency of that outcome, compute 

 

for each outcome. Table 9-2 shows these calculations. 

Table 9-2. Outcome Frequencies from a Six-Sided Die. 

Outcome E O 
 

1 6 8 0.667 
2 6 5 0.167 
3 6 9 1.500 
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4 6 2 2.667 
5 6 7 0.167 
6 6 5 0.167 

 

Next we add up all the values in Column 4 of Table 9-2. 

 

This sampling distribution of  

 

is approximately distributed as Chi Square with k-1 degrees of freedom, where k is the number of 
categories. Therefore, for this problem the test statistic is 

 

which means the value of Chi Square with 5 degrees of freedom is 5.333.  

From a Chi Square calculator64 it can be determined that the probability of a Chi Square of 5.333 or 
larger is 0.377. Therefore, the null hypothesis that the die is fair cannot be rejected. 

This Chi Square test can also be used to test other deviations between expected and observed 
frequencies. The following example shows a test of whether the variable "University GPA" in the SAT 
and College GPA case study is normally distributed. 

The first column in Table 9-3 shows the normal distribution divided into five ranges. The second column 
shows the proportions of a normal distribution falling in the ranges specified in the first column. The 
expected frequencies (E) are calculated by multiplying the number of scores (105) by the proportion. 
The final column shows the observed number of scores in each range. It is clear that the observed 
frequencies vary greatly from the expected frequencies. Note that if the distribution were normal, then 
there would have been only about 35 scores between 0 and 1, whereas 60 were observed.  

Table 9-3. Expected and Observed Scores for 105 University GPA Scores. 

Range Proportion E O 
Above 1 0.159 16.695 9 

0 to 1 0.341 35.805 60 
-1 to 0 0.341 35.805 17 

Below -1 0.159 16.695 19 
 

 
64 http://onlinestatbook.com/2/calculators/chi_square_prob.html 
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The test of whether the observed scores deviate significantly from the expected scores is computed 
using the familiar calculation.  

 

The subscript "3" means there are three degrees of freedom. As before, the degrees of freedom is the 
number of outcomes minus 1, which is 4 - 1 = 3 in this example. A Chi Square distribution calculator 
shows that p < 0.001 for this Chi Square. Therefore, the null hypothesis that the scores are normally 
distributed can be rejected.  

Contingency Tables65 
This section shows how to use Chi Square to test the relationship between nominal variables for 
significance. For example, Table 9-4 shows the data from the Mediterranean Diet and Health case 
study.66 

Table 9-4. Frequencies for Diet and Health Study. 

 Outcome 
Diet Cancers Fatal Heart Disease Non-Fatal Heart Disease Healthy Total 
AHA 15 24 25 239 303 

Mediterranean 7 14 8 273 302 
Total 22 38 33 512 605 

 

The question is whether there is a significant relationship between diet and outcome. Again, software 
can calculate a p-value for us in order to test for significance. But if we are wondering what’s going on 
under the hood, the first step is to compute the expected frequency for each cell based on the 
assumption that there is no relationship. These expected frequencies are computed from the totals as 
follows. We begin by computing the expected frequency for the AHA Diet/Cancers combination. Note 
that 22/605 subjects developed cancer. The proportion who developed cancer is therefore 0.0364. If 
there were no relationship between diet and outcome, then we would expect 0.0364 of those on the 
AHA diet to develop cancer. Since 303 subjects were on the AHA diet, we would expect (0.0364)(303) = 
11.02 cancers on the AHA diet. Similarly, we would expect (0.0364)(302) = 10.98 cancers on the 
Mediterranean diet. In general, the expected frequency for a cell in the ith row and the jth column is 
equal to  

 

 
65 This section is adapted from David M. Lane. “Contingency Tables.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/chi_square/contingency.html 
66 http://onlinestatbook.com/2/case_studies/diet.html 
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where Ei,j is the expected frequency for cell i,j, Ti is the total for the ith row, Tj is the total for the jth 
column, and T is the total number of observations. For the AHA Diet/Cancers cell, i = 1, j = 1, Ti = 303, Tj 
= 22, and T = 605. Table 9-5 shows the expected frequencies (in parenthesis) for each cell in the 
experiment.  

Table 9-5. Observed and Expected Frequencies for Diet and Health Study. 

 Outcome 
Diet Cancers Fatal Heart Disease Non-Fatal Heart Disease Healthy Total 

AHA 
15 

(11.02) 
24 

(19.03) 
25 

(16.53) 
239 

(256.42) 
303 

Mediterranean 
7 

(10.98) 
14 

(18.97) 
8 

(16.47) 
273 

(255.58) 
302 

Total 22 38 33 512 605 
 

The significance test is conducted by computing Chi Square as follows. 

 

The degrees of freedom is equal to (r-1)(c-1), where r is the number of rows and c is the number of 
columns. For this example, the degrees of freedom is (2-1)(4-1) = 3. The Chi Square calculator67 can be 
used to determine that the probability value for a Chi Square of 16.55 with three degrees of freedom is 
equal to 0.0009. Therefore, the null hypothesis of no relationship between diet and outcome can be 
rejected. 

A key assumption of this Chi Square test is that each subject contributes data to only one cell. Therefore, 
the sum of all cell frequencies in the table must be the same as the number of subjects in the 
experiment. Consider an experiment in which each of 16 subjects attempted two anagram problems. 
The data are shown in Table 9-6.  

Table 9-6. Anagram Problem Data. 

 Anagram 1 Anagram 2 
Solved 10 4 

Did not Solve 6 12 
 

It would not be valid to use the Chi Square test on these data since each subject contributed data to two 
cells: one cell based on their performance on Anagram 1 and one cell based on their performance on 
Anagram 2. The total of the cell frequencies in the table is 32, but the total number of subjects is only 
16.  

 
67 http://onlinestatbook.com/2/calculators/chi_square_prob.html 
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Chapter 10. Causality 
Causation68 
The concept of causation is a complex one in the philosophy of science.69 Since a full coverage of this 
topic is well beyond the scope of this text, we focus on two specific topics: (1) the establishment of 
causation in experiments and (2) the establishment of causation in non-experimental designs. 

Establishing Causation in Experiments 
Consider a simple experiment in which subjects are sampled randomly from a population and then 
assigned randomly to either the experimental group or the control group. Assume the condition means 
on the dependent variable differed. Does this mean the treatment caused the difference?  

To make this discussion more concrete, assume that the experimental group received a drug for 
insomnia, the control group received a placebo, and the dependent variable was the number of minutes 
the subject slept that night. An obvious obstacle to inferring causality is that there are many 
unmeasured variables that affect how many hours someone sleeps. Among them are how much stress 
the person is under, physiological and genetic factors, how much caffeine they consumed, how much 
sleep they got the night before, etc. Perhaps differences between the groups on these factors are 
responsible for the difference in the number of minutes slept. 

At first blush it might seem that the random assignment eliminates differences in unmeasured variables. 
However, this is not the case. Random assignment ensures that differences on unmeasured variables are 
chance differences. It does not ensure that there are no differences. Perhaps, by chance, many subjects 
in the control group were under high stress and this stress made it more difficult to fall asleep. The fact 
that the greater stress in the control group was due to chance does not mean it could not be responsible 
for the difference between the control and the experimental groups. In other words, the observed 
difference in "minutes slept" could have been due to a chance difference between the control group 
and the experimental group rather than due to the drug's effect. 

This problem seems intractable since, by definition, it is impossible to measure an "unmeasured 
variable" just as it is impossible to measure and control all variables that affect the dependent variable. 
However, although it is impossible to assess the effect of any single unmeasured variable, it is possible 
to assess the combined effects of all unmeasured variables. Since everyone in a given condition is 
treated the same in the experiment, differences in their scores on the dependent variable must be due 
to the unmeasured variables. Therefore, a measure of the differences among the subjects within a 
condition is a measure of the sum total of the effects of the unmeasured variables. The most common 
measure of differences is the variance. By using the within-condition variance to assess the effects of 
unmeasured variables, statistical methods determine the probability that these unmeasured variables 
could produce a difference between conditions as large or larger than the difference obtained in the 
experiment. If that probability is low, then it is inferred (that's why they call it inferential statistics) that 
the treatment had an effect and that the differences are not entirely due to chance. Of course, there is 

 
68 This section is adapted from David M. Lane. “Causation.” Online Statistics Education: A Multimedia Course of 
Study. http://onlinestatbook.com/2/research_design/causation.html 
69 See http://plato.stanford.edu/search/searcher.py?query=causation 

http://onlinestatbook.com/2/research_design/causation.html
http://plato.stanford.edu/search/searcher.py?query=causation


Chapter 10. Causality 

Statistics Minus the Math – 2/16/2020 version  Page 114 

always some nonzero probability that the difference occurred by chance so total certainty is not a 
possibility. 

Causation in Non-Experimental Designs 
It is almost a cliché that correlation does not mean causation. The main fallacy in inferring causation 
from correlation is called the third variable problem and means that a third variable is responsible for 
the correlation between two other variables. An excellent example used by Li (1975)70 to illustrate this 
point is the positive correlation in Taiwan in the 1970's between the use of contraception and the 
number of electric appliances in one's house. Of course, using contraception does not induce you to buy 
electrical appliances or vice versa. Instead, the third variable of education level affects both. 

Does the possibility of a third-variable problem make it impossible to draw causal inferences without 
doing an experiment? One approach is to simply assume that you do not have a third-variable problem. 
This approach, although common, is not very satisfactory. However, be aware that the assumption of no 
third-variable problem may be hidden behind a complex causal model that contains sophisticated and 
elegant mathematics. 

A better though, admittedly more difficult approach, is to find converging evidence. This was the 
approach taken to conclude that smoking causes cancer. The analysis included converging evidence 
from retrospective studies, prospective studies, lab studies with animals, and theoretical understandings 
of cancer causes. 

A second problem is determining the direction of causality. A correlation between two variables does 
not indicate which variable is causing which. For example, Reinhart and Rogoff (2010)71 found a strong 
correlation between public debt and GDP growth. Although some have argued that public debt slows 
growth, most evidence supports the alternative that slow growth increases public debt.72 

Experimental Designs73 
There are many ways an experiment can be designed. For example, subjects can all be tested under 
each of the treatment conditions or a different group of subjects can be used for each treatment. An 
experiment might have just one independent variable or it might have several. This section describes 
basic experimental designs and their advantages and disadvantages.  

Between-Subjects Designs 
In a between-subjects design, the various experimental treatments are given to different groups of 
subjects. For example, in the "Teacher Ratings"74 case study, subjects were randomly divided into two 
groups. Subjects were all told they were going to see a video of an instructor's lecture after which they 
would rate the quality of the lecture. The groups differed in that the subjects in one group were told 
that prior teaching evaluations indicated that the instructor was charismatic whereas subjects in the 

 
70 Li, C. (1975) Path analysis: A primer. Boxwood Press, Pacific Grove, CA. 
71 Reinhart, C. M. and Rogoff, K. S. (2010). Growth in a Time of Debt. Working Paper 15639, National Bureau of 
Economic Research, http://www.nber.org/papers/w15639 
72 For a video on causality featuring evidence that smoking causes cancer, see 
http://www.learner.org/resources/series65.html 
73 This section is adapted from David M. Lane. “Experimental Designs.” Online Statistics Education: A Multimedia 
Course of Study. http://onlinestatbook.com/2/research_design/designs.html 
74 http://onlinestatbook.com/2/case_studies/ratings.html 
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other group were told that the evaluations indicated the instructor was punitive. In this experiment, the 
independent variable is "Condition" and has two levels (charismatic teacher and punitive teacher). It is a 
between-subjects variable because different subjects were used for the two levels of the independent 
variable: subjects were in either the "charismatic teacher" or the "punitive teacher" condition. Thus the 
comparison of the charismatic-teacher condition with the punitive-teacher condition is a comparison 
between the subjects in one condition with the subjects in the other condition.  

The two conditions were treated exactly the same except for the instructions they received. Therefore, 
it would appear that any difference between conditions should be attributed to the treatments 
themselves. However, this ignores the possibility of chance differences between the groups. That is, by 
chance, the raters in one condition might have, on average, been more lenient than the raters in the 
other condition. Randomly assigning subjects to treatments ensures that all differences between 
conditions are chance differences; it does not ensure there will be no differences. The key question, 
then, is how to distinguish real differences from chance differences. The field of inferential statistics 
answers just this question. Analyzing the data from this experiment reveals that the ratings in the 
charismatic-teacher condition were higher than those in the punitive-teacher condition. Using 
inferential statistics, it can be calculated that the probability of finding a difference as large or larger 
than the one obtained if the treatment had no effect is only 0.018. Therefore it seems likely that the 
treatment had an effect and it is not the case that all differences were chance differences.  

Independent variables often have several levels. For example, in the "Smiles and Leniency" case study 
the independent variable is "type of smile" and there are four levels of this independent variable: (1) 
false smile, (2) felt smile, (3) miserable smile, and (4) a neutral control. Keep in mind that although there 
are four levels, there is only one independent variable. Designs with more than one independent 
variable are considered next. 

Multi-Factor Between-Subject Designs 
In the "Bias Against Associates of the Obese"75 experiment, the qualifications of potential job applicants 
were judged. Each applicant was accompanied by an associate. The experiment had two independent 
variables: the weight of the associate (obese or average) and the applicant's relationship to the 
associate (girl friend or acquaintance). This design can be described as an Associate's Weight (2) x 
Associate's Relationship (2) factorial design. The numbers in parentheses represent the number of levels 
of the independent variable. The design was a factorial design because all four combinations of 
associate's weight and associate's relationship were included. The dependent variable was a rating of 
the applicant's qualifications (on a 9-point scale). 

If two separate experiments had been conducted, one to test the effect of Associate's Weight and one 
to test the effect of Associate's Relationship then there would be no way to assess whether the effect of 
Associate's Weight depended on the Associate's Relationship. One might imagine that the Associate's 
Weight would have a larger effect if the associate were a girl friend rather than merely an acquaintance. 
A factorial design allows this question to be addressed. When the effect of one variable does differ 
depending on the level of the other variable then it is said that there is an interaction between the 
variables. 

 
75 http://onlinestatbook.com/2/case_studies/obesity_relation.html 
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Factorial designs can have three or more independent variables. In order to be a between-subjects 
design there must be a separate group of subjects for each combination of the levels of the independent 
variables. 

Within-Subjects Designs 
A within-subjects design differs from a between-subjects design in that the same subjects perform at all 
levels of the independent variable. For example consider the "ADHD Treatment"76 case study. In this 
experiment, subjects diagnosed as having attention deficit disorder were each tested on a delay of 
gratification task after receiving methylphenidate (MPH). All subjects were tested four times, once after 
receiving one of the four doses. Since each subject was tested under each of the four levels of the 
independent variable "dose," the design is a within-subjects design and dose is a within-subjects 
variable. Within-subjects designs are sometimes called repeated-measures designs. 

Advantage of Within-Subjects Designs 
An advantage of within-subjects designs is that individual differences in subjects' overall levels of 
performance are controlled. This is important because subjects invariably will differ greatly from one 
another. In an experiment on problem solving, some subjects will be better than others regardless of the 
condition they are in. Similarly, in a study of blood pressure some subjects will have higher blood 
pressure than others regardless of the condition. Within-subjects designs control these individual 
differences by comparing the scores of a subject in one condition to the scores of the same subject in 
other conditions. In this sense each subject serves as his or her own control. This typically gives within-
subjects designs considerably more power (ability to find precise estimates) than between-subjects 
designs. That is, this makes within-subjects designs more able to detect an effect of the independent 
variable than are between-subjects designs. 

Within-subjects designs are often called "repeated-measures" designs since repeated measurements are 
taken for each subject. Similarly, a within-subject variable can be called a repeated-measures factor. 

Complex Designs 
Designs can contain combinations of between-subject and within-subject variables. For example, the 
"Weapons and Aggression"77 case study has one between-subject variable (gender) and two within-
subject variables (the type of priming word and the type of word to be responded to).  

 
76 http://onlinestatbook.com/2/case_studies/adhd.html 
77 http://onlinestatbook.com/2/case_studies/guns.html 
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Chapter 11. Models and Uncertainty 
Before I leave my house each morning, I need to decide whether to take an umbrella. So I check my 
phone to see whether it’s supposed to rain. Instead of giving me a direct yes or no answer, the weather 
tells me the percentage chance of rain for the day. 

Why does the weather app give me a percentage? Because there’s uncertainty. Science has done a lot to 
help us understand the weather. And as our understanding of the weather improves, our predictions get 
better. But we still can’t predict rain perfectly. 

Facing uncertainty is a common problem when we’re looking at data. Whether we’re trying to explain 
the weather, human behavior, or even plant growth, we can’t make perfect predictions because there 
are things we can’t fully explain with our current scientific knowledge. 

In statistics, we have several tools that allow us to acknowledge uncertainty. This enables us to build 
models like the ones powering my weather app—models that give us a prediction that includes a 
description of how uncertain we are. Some days we are 100% sure it will rain, other days only 60%. 

In order to build these models that acknowledge uncertainty, we need a way to talk about what we do 
know and what we don’t know. Let me give a very simple example of a model that accounts for 
uncertainty: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3.0 + 2.3 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 + 𝜀𝜀 

This model attempts to explain one’s level of happiness based on their income. You might notice that it 
looks very similar to the regression equations we saw in Chapter 3. That’s because regression is one of 
the main tools used to estimate a model that includes uncertainty. 

What does this model mean in practical terms? Well, there are no obvious units we can use to quantify 
the amount of happiness someone experiences, so the exact values of the numbers we see are not 
particularly meaningful. But the fact that there’s a positive number (2.3) that is being multiplied by 
income implies that as income gets bigger, happiness gets larger. 

The key part of this equation that I want to focus on is the little Greek letter at the end of the equation: 
𝜀𝜀. This letter is called “epsilon,” and it is often used to represent what we call an error term (also 
sometimes called a disturbance term). The error term (𝜀𝜀) represents everything else besides income 
that affects happiness. By including an error term, we are acknowledging that we can’t perfectly predict 
one’s level of happiness based on their income. We think that knowing one’s income will help us predict 
their happiness, but we know there are other factors we won’t be able to measure or identify that will 
also affect happiness. Thus, if all we know about someone is their income, we will have uncertainty 
about their exact level of happiness. By including an error term (𝜀𝜀) in the model, we make clear that we 
only claim to have a partial understanding of happiness, not a complete one. 

Think for a moment about how few topics we could study if we didn’t have the freedom to build models 
that include uncertainty. We’d only be able to build a model of a dependent variable after we had 
identified (and measured) all of the factors that affect that variable! We wouldn’t be able to build a 
model of rain since we don’t know all of the factors that affect the rain. We couldn’t build a model of 
voting behavior since we don’t know everything that affects how someone will vote. By including an 
error term in our model, we can build models even when our understanding of something is incomplete. 
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The first part of our model that appears on the right side of the equation (3.0 + 2.3 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is 
sometimes described as the systematic part of our model. It’s what we would use to build a prediction 
of happiness if all we know about some is their income level. Suppose, for example, that someone has 
an income of 4 units (perhaps income is measured in tens of thousands of dollars of annual income, so a 
salary of $40,000 is coded as a 4). According to our model, that person’s happiness would be: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3.0 + 2.3 × (4) + 𝜀𝜀 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 12.2 + 𝜀𝜀 

We, therefore, predict that someone with an income of 4 will have a happiness of 12.2, but we also 
acknowledge that their actually happiness will likely be a bit different from our prediction since our 
model indicates that their actual happiness will equal 12.2 plus the value of the error term (𝜀𝜀). 

The error term describes something unknown, so we can’t measure it or directly observe it. But what we 
can do is talk about its characteristics using concepts from probability theory. Specifically, we’re going to 
describe the value of the error term as being randomly selected. You may have dealt with randomness 
in math classes before using examples such as coin flips, die rolls, or drawing cards from a 52-card deck. 
Just as the likelihood of different outcomes from parlor games can be described using probability, we’re 
going to use probability to describe different possible values for the error term of a statistical model. 

Assumptions about error terms 
It’s easy to write out an equation that includes an error term, but we are not going to be able to do 
much with our model unless we make some assumptions about the error term. One of the most 
important (and challenging) parts of doing statistical analysis is making assumptions about the possible 
values of the error term. Different assumptions about the error term can result in very different 
conclusions. 

Let’s again consider the simple model of happiness that was introduced above: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3.0 + 2.3 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀 

We might assume the following things about the error term (𝜀𝜀): 

1. The values of the error term (𝜀𝜀) can be described by a normal distribution with a mean of 0 
2. Knowing someone’s income doesn’t help us predict the values of the error term (𝜀𝜀) 

What do these two assumptions mean? 

First, if the error term (𝜀𝜀) follows a normal distribution with a mean of zero, that means that (according 
to our model), people are just as likely to have a positive value of the error term as they are to have a 
negative value of the error term. In other words, all those factors we haven’t accounted for in our model 
are equally likely to push people in the direction of being happier or in the direction of being less happy. 
Our model and assumptions tell us that if we predict happiness purely based on income, we’ll 
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overestimate some people’s happiness, and we’ll underestimate an equal number of people’s 
happiness.78 

Second, these assumptions allow us to describe how much individual observations will tend to deviate 
from our income-based predictions. We haven’t specified in our assumptions what the standard 
deviation is for the normal distribution for the error term (𝜀𝜀), but statistical analysis will let us estimate 
the standard deviation of an error term. And we know that there is a 95% chance of drawing a value 
within two standard deviations of the mean for any normal distribution. So whatever the standard 
deviation of the error term (𝜀𝜀) is, we would expect that 95% of the time, the error term will take on a 
value that is within two standard deviations of zero. Conversely, 5% of the time, the error term will take 
on a value that is more than two standard deviations from zero. Suppose that the standard deviation of 
the error term (𝜀𝜀) happens to be three. If we have a dataset containing the income and happiness of 
1000 randomly-selected people, we would expect that about 950 of these people will have a level of 
happiness that falls within six units of our income-based prediction. But for about 50 of these people, 
our prediction of their happiness will be off by more than six units. 

Third, our assumptions imply that income is not tied in any consistent way to (the total sum of) factors 
other than income that also affect peoples’ happiness. Remember, the error term (𝜀𝜀) represents all 
factors other than income that affect satisfaction. If income is related to these other factors, then the 
value of income should help us predict the value of the error term. For example, if having a stable 
environment in childhood tends to cause both higher incomes and greater happiness in adulthood, the 
error term will partially reflect the effect of childhood stability on happiness, so high incomes (which are 
partially caused by childhood stability) will be probably be predictive of a more positive error term. This 
would constitute a violation of our assumptions since we specifically indicated that income wasn’t 
predictive of the error term. As this example illustrates, our assumptions about error terms are often 
quite strict, making it rather difficult in practice to build good models that account for uncertainty. 

Models and probabilistic thinking 
Despite the difficulty inherent in building models that accommodate uncertainty, we have little 
alternative unless we wish to only build models of things we think we can predict with 100% accuracy. 
And fortunately, our models do not always have to be perfectly correct in order to generate useful 
predictions or explanations. As the statistician George Box famously said, “all models are wrong, but 
some are useful.” 

An important part of learning to do good statistical analysis is learning to think clearly about models so 
that you can pick out a model that is useful for whatever it is you want to accomplish. And the first step 
toward understanding many statistical models is learning to think about the world in probabilistic terms, 
as we’ve done here in this reading. Probabilistic thinking asks questions like: 

• Based on what I do know and what I don’t know, what can I predict? 
• How does adding or removing different pieces of information change my prediction? 
• How much uncertainty is there in my prediction? 

 
78 Note that these deviations from our prediction don’t imply that our model is wrong; our model explicitly 
acknowledges that we’ll get only imperfect estimates if we predict happiness based on income, since the 
unobserved error term (𝜀𝜀) also contributes to happiness. 
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• How often will my prediction differ greatly from what actually happens (even if my model is 
correct)?  
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Chapter 12. Regression with Qualitative Independent Variables 
Let’s say I’m interested in studying how personality relates to gender. The most common personality 
measure in psychology is called the “Big Five” personality inventory. There is a standard set of 50 survey 
items that researchers can use to measure five aspects of personality. Here’s an example of some of 
these questions and how they are formatted: 

 

For now, I decide to focus on whether people are introverted or extroverted. Extroverts are out-going 
and tend to enjoy interacting with others. Extroverts will tend to agree with the statement “I am the life 
of the party” while introverts will tend to agree with the item “I don’t talk a lot.” 

I find a dataset that contains lots of responses to the Big Five personality questions as well as 
information on the gender of each respondent.79 There are 10 different questions related to 
extroversion, and the dataset has one variable (column of data) for each of these 10 questions. The 
column labeled e1 shows responses to the item “I am the life of the party.” A value of 1 means the 
respondent disagrees with this statement, while a 3 indicates neutral, and a 5 means they disagree. 

 
79 https://openpsychometrics.org/_rawdata/ (the file I used is called “BIG5.zip”) 

https://openpsychometrics.org/_rawdata/
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For all of the odd-numbered extroversion questions (e1, e3, e5, etc.), agreement indicates extroversion. 
For the even-numbered items (e2, e4, e6, etc.), agreement indicates introversion. To create a single 
extroversion variable that combines responses from all 10 survey items, I create a tally, adding up all the 
values for odd-numbered questions and then subtracting the responses to the even-numbered 
questions. An extreme extrovert will have a 5 for all the odd-numbered questions and a 1 for all of the 
even-numbered ones, giving them a score of 20 (5x5-5x1=20). An extreme introvert will have a -20 since 
they will answer 1 to all the odd-numbered questions and 5 to all the even-numbered ones (5x1-5x5=-
20). 

Most people lie somewhere in the middle between introversion and extroversion: 
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Our gender variable was measured by asking respondents “What is your gender?” and they could 
choose from male, female, or other. In a moment, we’ll consider those who responded “other,” but for 
now, let’s just look at those who chose either male or female. 

Predicting extraversion using gender 
If I want to describe differences in extraversion by gender in this dataset, I can compute the mean value 
of extraversion for males and for females. It turns out that males have an average extraversion of -0.46 
while females’ average level of extraversion is 0.53. Thus, the average female is about 1-point more 
extraverted than the average male. But of course, there is lots of variation in extraversion among both 
groups: 

0
.0

1
.0

2
.0

3
.0

4
D

en
si

ty

-20 -10 0 10 20
Extraversion



Chapter 12. Regression with Qualitative Independent Variables 

Statistics Minus the Math – 2/16/2020 version  Page 124 

 

There are plenty of females who are introverts and plenty of males who are extroverts. 

If you asked me to guess the extroversion level of someone and the only thing you told me about them 
was their gender, my best bet would probably be to guess the average extroversion level for someone of 
that gender. So for a female I knew nothing else about, I would guess their extroversion to be 0.53, 
while for a male I’d guess -0.46. 

Social scientists use the dependent variable to describe the variable they’re making a prediction about 
and independent variable to describe the variables that help them make that prediction. So in this 
example, extraversion is my dependent variable and gender is my independent variable. 

When we’re working with data, sometimes it’s helpful to express how I would make a guess about a 
dependent variable (extraversion) based on other factors (gender) using a mathematical formula. In 
fact, this is exactly what we do when we run a regression. There are many ways I could write this 
formula, but I’ll show just two for now. First, I could write: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 0.46 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (1) 

Notice I’ve added a “hat” above the name of the variable Extraversion; this hat means that I’m making 
a guess about the value of that variable (I’m guessing the level of extraversion based on gender). The 
equation has two other variables Female and Male, and these two variables will take on a value of 1 if 
the person’s gender is equal to the name of the variable and will otherwise take on a value of 0. For a 
female, Female will equal 1 and Male will equal 0, giving us: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × (1) − 0.46 × (0) = 0.53 
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So our guess for the level of extroversion (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� ) of a female we know nothing about is 0.53. 

For a male, our guess is: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × (0) − 0.46 × (1) = −0.46 

There’s a second way I can write my formula, which will turn out to be more useful in the future when 
we come to consider multiple factors at the same time that might help us predict the value of a 
dependent variable. Rather than having two variables to represent gender in my equation, I can just use 
one: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 − 0.99 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (2) 

In equation (2), we start from female as our baseline. Notice that the first number we see (0.53) is our 
guess for the value of extraversion for a female. When we’re considering a female, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, so: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53− 0.99 × 0 = 0.53 

Thus, we get the right prediction for females from this equation, even though we didn’t include a 
variable specifically for females. If we have a male, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1, so we get: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 − 0.99 × 1 = −0.46 

This is the same prediction we got before. Remember, I decided to initially just analyze respondents who 
selected either male or female. Since we are only considering two categories (male or female), and each 
respondent is either a male or a female, saying 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1 let’s me know that 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0. It’s actually 
repetitive in this context to both say that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0. Similarly, saying 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0 implies 
that 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1. So I can simplify my equation by just including one variable to indicate binary gender. 

Notice that in equation (2), the number next to Male is equal to the difference between the average 
level of extraversion for females and the average level for males (0.53 − (−0.46) = 0.99). This is 
because equation (2) starts with females as the baseline, so to get our prediction for males, we have to 
adjust our baseline prediction by the average difference for males. 

Equation (2) is also typically how we will arrange our equation when we’re running a regression. 

Prediction with more than two categories for gender 
I now move beyond the gender binary and consider the “other” category in survey responses. I’ll refer to 
this other category as “non-binary” gender. The average level of extraversion among those with non-
binary gender is -5.66. So non-binary people tend to be quite a bit more introverted than those who 
identify as male or female. As with males and females, there is considerable variation among non-binary 
people: 
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The number of non-binary respondents is relatively small (102), so it’s not terrible surprising that this 
histogram looks a bit choppier than the ones we saw before. 

Again, if we had to make a guess about the level of extraversion of someone, and all we knew about that 
person was that their gender was non-binary, we would probably want to guess the mean value among 
non-binary respondents (-5.66). Modifying equation (1) to incorporate a third category is relatively 
straightforward: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 0.46 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 5.66 × 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 (3) 

For someone who identifies as female, we would plug in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, and 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 = 0: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × (1) − 0.46 × (0) − 5.66 × (0) = 0.53 

If someone identifies as non-binary, we would use 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒 = 0, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, and 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 = 1: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 × (0) − 0.46 × (0) − 5.66 × (1) = −5.66 

We can also return to the format of equation (2) but modify it to include the other category. This is how 
we will typically write our equation if we are doing a regression: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53 − 0.99 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 6.19 × 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 (4) 

Now that there are three possible values for gender (female, male, and other), knowing the value of 
Male doesn’t necessarily allow us to conclude what the vale of female is. If 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = 0, the individual 
could identify as either female or non-binary. So we have to include a second variable. In this case, we 
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chose to include the variable Other. If we know the values of Male and Other, we can always figure out 
the value of Female by process of elimination. 

For a non-binary person, we plug in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, and 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 = 1: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53− 0.99 × (0) − 6.19 × (1) = −5.66 

When considering a female, we use 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, and 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 = 0: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� = 0.53− 0.99 × (0) − 6.19 × (0) = 0.53 

Equations (3) and (4) communicate an equivalent method of making a prediction about extraversion 
based on gender; they just offer this information in two different formats. Equation (4) might be a bit 
trickier to understand for now, but it will become very useful in the future. 

Notice that we can talk about gender either as one qualitative variable with three possible values 
(female, male, or other), or we can talk about it as a series of three dummy variables (Female, Male, and 
Other) that can take each on a value of either 0 or 1. This can make things a bit confusing, but the 
important thing to remember is that when we have a qualitative variable with more than two 
categories, we’ll need to break out the categories into a set of dummy variables for purposes of 
representing the qualitative variable in an equation. 

However, as equations (2) and (4) illustrate, we don’t necessarily need a dummy variable for every single 
category. Specifically, whenever we want to create an equation with a qualitative independent variable 
in a format like equations (2) or (4), the number of dummy variables should be equal to the number of 
categories minus one. Since our gender variable can take on three possible values in this example, we 
included two independent variables in equation (4). No dummy variable is included for female, so we 
call female the omitted category or the baseline category. Remember, the first number in equation (4) 
is 0.53, which represents our guess for females—the baseline category. If we instead had a qualitative 
variable with five categories, we would include four dummy variables in our equation. 
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Chapter 13. Regression with Qualitative Dependent Variables 
Suppose I want to build a model of voting. I decide to use the 2016 American National Election Studies80 
survey results to try to understand how race is associated with voting. Respondents in the 2016 survey 
were asked about who they voted for in 2012, and I’m going to focus on their 2012 voting patterns for 
now. Here are the distributions for my two main variables of interest: 

. tab vote 
 
PRE: RECALL OF LAST (2012) PRESIDENTIAL | 
                            VOTE CHOICE |      Freq.     Percent        Cum. 
----------------------------------------+----------------------------------- 
                        1. Barack Obama |      1,728       56.58       56.58 
                         2. Mitt Romney |      1,268       41.52       98.10 
                       5. Other SPECIFY |         58        1.90      100.00 
----------------------------------------+----------------------------------- 
                                  Total |      3,054      100.00 
 
. tab race 
 
  PRE: SUMMARY - R SELF-IDENTIFIED RACE |      Freq.     Percent        Cum. 
----------------------------------------+----------------------------------- 
                 1. White, non-Hispanic |      3,038       71.68       71.68 
                 2. Black, non-Hispanic |        398        9.39       81.08 
3. Asian, native Hawaiian or other Paci |        148        3.49       84.57 
4. Native American or Alaska Native, no |         27        0.64       85.21 
                            5. Hispanic |        450       10.62       95.82 
6. Other non-Hispanic incl multiple rac |        177        4.18      100.00 
----------------------------------------+----------------------------------- 
                                  Total |      4,238      100.00 
 

Notice that my dependent variable (voting) is qualitative. It can take on three possible values: voted for 
Obama, voted for Romney, or voted for other. 

I can build a simple set of regression models to see how race predicts vote choice. The key is to first 
convert each of the three categories for my dependent variable into it’s own dummy variable. I can 
accomplish this with the following code: 

tab vote, gen(vote_) 
 

I now have several new variables in my dataset that have names starting with “race_”: 
 
. tab vote_1 
 
   vote==1. | 
     Barack | 
      Obama |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |      1,326       43.42       43.42 
          1 |      1,728       56.58      100.00 

 
80 https://electionstudies.org/data-center/2016-time-series-study/ 

https://electionstudies.org/data-center/2016-time-series-study/
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------------+----------------------------------- 
      Total |      3,054      100.00 
 
. tab vote_2 
 
   vote==2. | 
Mitt Romney |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |      1,786       58.48       58.48 
          1 |      1,268       41.52      100.00 
------------+----------------------------------- 
      Total |      3,054      100.00 
 
. tab vote_3 
 
   vote==5. | 
      Other | 
    SPECIFY |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |      2,996       98.10       98.10 
          1 |         58        1.90      100.00 
------------+----------------------------------- 
      Total |      3,054      100.00 
 

I also convert my race variable into a set of dummy variables by running: 

tab race, gen(race_) 

I can then run three regression, one for each value of my dependent variable. Let’s start with voting for 
Obama (vote_1): 

. reg vote_1 race_2 race_3 race_4 race_5 race_6 
 
      Source |       SS           df       MS      Number of obs   =     3,036 
-------------+----------------------------------   F(5, 3030)      =     76.29 
       Model |  83.3981974         5  16.6796395   Prob > F        =    0.0000 
    Residual |  662.426572     3,030  .218622631   R-squared       =    0.1118 
-------------+----------------------------------   Adj R-squared   =    0.1104 
       Total |  745.824769     3,035  .245741275   Root MSE        =    .46757 
 
------------------------------------------------------------------------------ 
      vote_1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      race_2 |   .4972868   .0281049    17.69   0.000     .4421802    .5523934 
      race_3 |   .2078207   .0541766     3.84   0.000     .1015941    .3140472 
      race_4 |   .1028423   .1353307     0.76   0.447     -.162507    .3681916 
      race_5 |   .3135004    .032158     9.75   0.000     .2504466    .3765542 
      race_6 |   .1042547   .0441427     2.36   0.018      .017702    .1908075 
       _cons |    .480491   .0097901    49.08   0.000     .4612952    .4996868 
------------------------------------------------------------------------------ 
 

Since our independent variable is qualitative, we have an omitted category. In this case, we’ve left 
category 1 (race_1) out of our regression, which indicates non-Hispanic white respondents. Our 



Chapter 13. Regression with Qualitative Dependent Variables 

Statistics Minus the Math – 2/16/2020 version  Page 130 

constant indicates that predicted value of the dependent variable when all independent variables are 
equal to zero. We can see this by writing out the regression equation: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_1� = .48 + .50𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2 + .21𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_3 + .10𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_4 + .31𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_5 + .10𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_6 

For non-Hispanic white respondents, race_1 equals one and all other race dummy variables equal 
zero, so we get: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_1� = .48 + .50(0) + .21(0) + .10(0) + .31(0) + .10(0) =  .48 

Remember, vote_1 is equal to zero if the respondent didn’t vote for Obama, and it is equal to one if 
the respondent did vote for Obama. Our predicted value is neither zero nor one; instead, we get .48. 
This can be interpreted as indicating the probability of a one. In other words, a non-Hispanic white has a 
.48 probability of voting for Obama. We can also convert this probability to a percentage by moving the 
decimal place two spots to the right: a non-Hispanic white is estimated to have a 48% chance of voting 
for Obama, according to this model. 

Now, let’s look at the slope coefficients. The coefficient for black (race_2) equals .50. Thus, a one-unit 
increase in race_2 is associated with a .50-unit increase in vote_1. Let’s break that down a bit to see 
if we can create a clearer interpretation. Since race_2 is a dummy variable and non-Hispanic white is 
the omitted category, a one-unit increase in race_2 correspondents to having a black respondent 
instead of a white respondent. And since our dependent variable is binary, we should think in terms of 
probabilities, which can be converted to percentages: a .50-unit increase in vote_1 means a 50 
percentage-point increase in the probability of voting for Obama. So putting this altogether, we’d say: 
(non-Hispanic) black voters are 50 percentage points more likely to vote for Obama than (non-Hispanic) 
white voters, according to this model. 

Similarly, Asian voters are 21 percentage points more likely to vote for Obama than (non-Hispanic) white 
voters. Native Americans are 10 percentage points more likely to vote for Obama than (non-Hispanic) 
white voters. Hispanics are 31 percentage points more likely to vote for Obama than non-Hispanic white 
voters. And voters identifying as multiracial or other race are 10 percentage points more likely to vote 
for Obama than (non-Hispanic) white voters. All of these differences are statistically significant, except 
for Native American versus white voters (probably because there are only 27 Native Americans in the 
sample, making the estimate of this difference very imprecise). 

Let’s move onto running a regression for the second category of our dependent variable: 

. reg vote_2 race_2 race_3 race_4 race_5 race_6 
 
      Source |       SS           df       MS      Number of obs   =     3,036 
-------------+----------------------------------   F(5, 3030)      =     72.35 
       Model |  78.6117037         5  15.7223407   Prob > F        =    0.0000 
    Residual |  658.463395     3,030  .217314652   R-squared       =    0.1067 
-------------+----------------------------------   Adj R-squared   =    0.1052 
       Total |  737.075099     3,035  .242858352   Root MSE        =    .46617 
 
------------------------------------------------------------------------------ 
      vote_2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      race_2 |   -.483031   .0280207   -17.24   0.000    -.5379725   -.4280895 
      race_3 |  -.2002027   .0540143    -3.71   0.000     -.306111   -.0942944 
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      race_4 |  -.0822373   .1349253    -0.61   0.542    -.3467917     .182317 
      race_5 |  -.3014791   .0320617    -9.40   0.000     -.364344   -.2386142 
      race_6 |  -.1344972   .0440105    -3.06   0.002    -.2207906   -.0482038 
       _cons |    .498904   .0097607    51.11   0.000     .4797657    .5180423 
------------------------------------------------------------------------------ 
 

Now we’re looking at predictions of voting for Mitt Romney. Our constant is .50, indicating that a non-
Hispanic white voter has a 50% chance of voting for Mitt Romney. The coefficient of -.48 for race_2 
indicates that (non-Hispanic) black voters are 48 percentage points less likely to vote for Mitt Romney 
than (non-Hispanic) white voters. I won’t go on to interpret the rest of the coefficients, but they follow 
the same pattern. 

Finally, let’s look at a regression with vote_3 as the dependent variable: 

. reg vote_3 race_2 race_3 race_4 race_5 race_6 
 
      Source |       SS           df       MS      Number of obs   =     3,036 
-------------+----------------------------------   F(5, 3030)      =      2.23 
       Model |   .20833556         5  .041667112   Prob > F        =    0.0490 
    Residual |  56.6836275     3,030  .018707468   R-squared       =    0.0037 
-------------+----------------------------------   Adj R-squared   =    0.0020 
       Total |  56.8919631     3,035  .018745293   Root MSE        =    .13678 
 
------------------------------------------------------------------------------ 
      vote_3 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      race_2 |  -.0142558   .0082213    -1.73   0.083    -.0303757    .0018642 
      race_3 |   -.007618   .0158479    -0.48   0.631    -.0386917    .0234557 
      race_4 |   -.020605   .0395873    -0.52   0.603    -.0982258    .0570158 
      race_5 |  -.0120213    .009407    -1.28   0.201     -.030466    .0064234 
      race_6 |   .0302425   .0129128     2.34   0.019     .0049238    .0555611 
       _cons |    .020605   .0028638     7.19   0.000     .0149898    .0262202 
------------------------------------------------------------------------------ 
 

This regression provides some insights into who supported third-party candidates in the 2012 election. 
First, our constant indicates that a non-Hispanic white voter has a 2% chance of voting third-party. (Non-
Hispanic) black voters are one percentage point less likely to vote third-party than white voters, 
although this difference is only significant at the .10 level. The only other significant slope coefficient is 
for race_6, where we see that people who identify as multiracial or other race are estimated to be 
three percentage points more likely to vote third-party than (non-Hispanic) white respondents. 

Now that we’ve run one regression for each category of our dependent variable, we’ve completed an 
analysis. Note that using regular linear regression (the reg function in Stata) is not the only way (or 
even necessarily the preferred way) to analyze a qualitative dependent variable. There are other models 
(e.g., multinomial logistic regression) that are specifically designed to be used with a qualitative 
dependent variable. However, using simple linear regression is a good way to get started looking at 
qualitative variables if you haven’t learned these fancier models and how to properly interpret them. 

One final thing I want to show you is that our results will be in a slightly different format but will be in 
one sense equivalent if we decide to use a different category as our omitted category when using a 
qualitative independent variable. Let’s say we want to make black (race_2) our reference category. 
Compare the following results to what we saw near the top of this page: 
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. reg vote_3 race_1 race_3 race_4 race_5 race_6 
 
      Source |       SS           df       MS      Number of obs   =     3,036 
-------------+----------------------------------   F(5, 3030)      =      2.23 
       Model |   .20833556         5  .041667112   Prob > F        =    0.0490 
    Residual |  56.6836275     3,030  .018707468   R-squared       =    0.0037 
-------------+----------------------------------   Adj R-squared   =    0.0020 
       Total |  56.8919631     3,035  .018745293   Root MSE        =    .13678 
 
------------------------------------------------------------------------------ 
      vote_3 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      race_1 |   .0142558   .0082213     1.73   0.083    -.0018642    .0303757 
      race_3 |   .0066378    .017388     0.38   0.703    -.0274557    .0407313 
      race_4 |  -.0063492   .0402287    -0.16   0.875    -.0852274     .072529 
      race_5 |   .0022345   .0118186     0.19   0.850    -.0209387    .0254077 
      race_6 |   .0444983   .0147623     3.01   0.003      .015553    .0734435 
       _cons |   .0063492   .0077064     0.82   0.410    -.0087611    .0214595 
------------------------------------------------------------------------------ 
 

Now, our constant tells us that a black voter has a .6% chance of voting third-party. This is the same 
prediction we would get from our prior model where race_1 was the omitted category: to find our 
prediction for black voters from the prior results we would have added the coefficient for race_2 (-
.014) to the constant (.021), yielding .6% or .006 (or .007 if we use the rounded numbers shown in 
parentheses). 

The coefficient for race_1 tells us about how white voters differ from black voters. Notice that the p-
value is exactly the same as what we saw in the prior table for race_2, and the coefficient for race_1 
in this table is the same as the coefficient for race_2 in the prior table, except the sign has changed. 
That’s because comparing black to white is the same as comparing white to black, except that we’re 
going in the opposite direction. 

You can go on to play around with these two sets of results more on your own if you’d like. Both 
regression equations will yield the same prediction for a voter of any given race. The difference lies only 
in the starting point, as represented by the constant. However, the p-values will usually differ because 
they are describing a different comparison (e.g., comparing Asian to black in this table versus comparing 
Asian to white in the prior table). Thus, it doesn’t really matter which category you pick as your omitted 
category, except that you may care more about some comparisons than others. You can also run the 
same regression multiple times but with different omitted categories so that you can get the p-values 
for a full set of comparisons across groups. 
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