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Revisiting Multicollinearity: 

When Correlated Predictors Exhibit Nonlinear Effects or Contain Measurement Error 

 

Abstract 

While multicollinearity weakens statistical power, the presence of correlation among 

predictors (multicollinearity) violates no assumptions of the standard linear regression model. 

This fact has led many scholars to conclude that multicollinearity poses no problems to valid 

statistical inference when significant results are obtained. While this conclusion is correct when 

all regression assumptions are perfectly met, multicollinearity can exacerbate problems 

associated with model misspecification or measurement error. In this paper, I use Monte Carlo 

simulations to demonstrate the effect of multicollinearity on type I errors (false positives) when 

nonlinearities are incorrectly modeled and when classical measurement error is present in some 

of the predictors. I conclude by offering a set of practical suggestions to applied researchers who 

encounter multicollinearity in their data.
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Revisiting Multicollinearity: 

When Correlated Predictors Exhibit Nonlinear Effects or Contain Measurement Error 

Multicollinearity is frequently invoked as a potential explanation for why results are 

insignificant. Considerable attention has been devoted to discussing a number of approaches—

dropping or transforming variables, collecting more data, combining multiple variables into a 

single index, or ridge regression—that may increase one’s ability to find significant coefficient 

estimates when multicollinearity is present in a dataset. Much less attention has been devoted to 

the topic of whether multicollinearity can pose (or at the very least signal) problems other than 

reduced precision of coefficient estimates. The dominant message from econometric literature 

appears to be that multicollinearity should cause no alarm if statistically significant results are 

found.1 After all, under the Gauss-Markov assumptions, coefficient and standard errors estimates 

are unbiased regardless of how much (imperfect) multicollinearity is present in the data. 

While the prevailing advice from econometric treatments of multicollinearity is 

appropriate for some situations, I argue that multicollinearity should not be ignored—even when 

results are significant—when researchers are testing for nonlinear effects or examining data that 

is likely to contain measurement error. When predictors are highly correlated, they can easily 

serve as proxies for one another, which can cause problems (such as false positives) when 

                                                 
1 More precisely, the dominant message is that the presence of high levels of multicollinearity 

does not constitute legitimate grounds for doubting the results of a test of statistical significance 

where the null hypothesis is rejected. If one cares about obtaining precise estimates of the size of 

a coefficient (rather than just conducting a hypothesis test), multicollinearity might still pose a 

problem. 
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nonlinear relationships are misspecified or variables are imperfectly measured. Applied 

researchers should be aware of these potential problems so that they can make educated 

judgements about what to do or what limitations apply to their results when there are high levels 

of multicollinearity in their data. 

In the following pages, I begin by taking a look at how the general topic of 

multicollinearity is currently discussed in political science and econometric literatures. I then 

examine how multicollinearity relates to the issue of model misspecification when testing for 

nonlinear relationships. Monte Carlo simulations are used to demonstrate the performance of 

competing nonlinear models with regards to the frequency of type I and type II errors under 

various levels of multicollinearity. Next, I consider the issue of measurement error and how its 

effect depends on the correlations among predictors. Another set of Monte Carlo simulations are 

conducted in order to test the extent to which multicollinearity and measurement error interact to 

produce increasing levels of bias in multiple regression coefficient estimates. I conclude with a 

discussion of how applied researchers can appropriately respond when they find high levels of 

multicollinearity in their data. 

Multicollinearity in the Literature 

Multicollinearity is standard topic for introductory courses on linear regression. In both 

methods textbooks and journal articles, multicollinearity discussions overwhelmingly focus on 

three aspects of the topic: (1) how to detect it, (2) what its effects are, and (3) what (if anything) 

researchers can do to obtain more precise estimates when they encounter multicollinearity 

(Dormann et al. 2013; Farrar and Glauber 1967; Graham 2003; Greene 2012, 89-94; Grewal, 

Cote, and Baumgartner 2004; Gujarati and Porter 2009, 320-364; Hill and Adkins 2001; Silvey 

1969; Wold et al. 1984; Wooldridge 2013, 95-98). While a number of statistics have been 
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created to aid in the detection of multicollinearity, the Variance Inflation Factor (VIF) is the most 

commonly used and discussed (O’Brien 2007; Wooldridge 2013, 98). A separate VIF must be 

calculated for each independent variable and indicates the extent to which the variance in that 

variable is shared with other independent variables. It is calculated as 1/(1 − 𝑅𝑖
2), where 𝑅𝑖

2 is 

the 𝑅2 value resulting from a regression where variable 𝑖 is predicted by all of the other 

independent variables. A VIF of 1 indicates that a variable is completely uncorrelated with the 

other independent variables while larger values indicate that a greater proportion of the variance 

can be predicted by the other independent variables. Some scholars have used rules of thumb 

stating that there is a multicollinearity problem if VIFs exceed 4 or 10, but these rules of thumb 

have been criticized (O’Brien 2007; Wooldridge 2013, 98). 

The effect of multicollinearity that receives the most attention is that it causes large 

standard errors for coefficients (and thus imprecise coefficient estimates), making it difficult to 

find statistically significant results (for individual variables). This reflects the fact that it is 

difficult to precisely determine the independent effects of variables that mostly vary in concert. 

The square root of a VIF indicates how many times larger the standard error for the given 

variable is than it would be if there was no multicollinearity present. For example, a variable 

with a VIF of 9 will have a standard error that is 3 times larger than it would be if it were 

uncorrelated with the other independent variables. Even if it is impossible to reliably determine 

independent effects for a set of variables that mostly vary together in a sample, the variables may 

still exhibit joint significance. In addition to large standard errors, other (related) effects of 

multicollinearity that are often discussed are that coefficient estimates can change dramatically in 

response to changes in the sample or model and that coefficients can have implausible directions 

or magnitudes (Farrar and Glauber 1967; Greene 2012, 89; Hill and Adkins 2001). For nonlinear 
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models (including maximum likelihood estimation models), multicollinearity may also cause 

failure to converge (Hill and Adkins 2001).2 If certain model selection or model averaging 

approaches are used, multicollinearity can cause bias in the final results because incorrect models 

are likely to be chosen or given some weight (Freckleton 2011; Graham 2003). 

As long as the Gauss-Markov assumptions are met and errors are normally distributed, 

the inflation in standard errors caused by multicollinearity is appropriately reflected in linear 

regression results, and all estimates are unbiased. For this reason, some have taken care to not 

overstate the problems associated with multicollinearity. For example, Achen (1982, 82) writes: 

“[M]ulticollinearity violates no regression assumptions. Unbiased, consistent estimates will 

occur, and their standard errors will be correctly estimated. The only effect of multicollinearity is 

to make it hard to get coefficient estimates with small standard error.” Under this viewpoint, 

multicollinearity is not a problem at all as long as the coefficient estimates provided by the 

regression analysis are precise enough to fit the researcher’s purpose. For example, when 

hypothesis tests are being conducted, low statistical power due to multicollinearity is not a true 

problem if the null hypotheses can be rejected. O’Brien (2007, 683) discourages researchers 

from treating multicollinearity as grounds for doubting the estimates derived from a regression 

yielding significant results: 

If a regression coefficient is statistically significant even when there is a large 

amount of multi-collinearity – it is statistically significant in the “face of that 

                                                 
2 It has also been shown that multilevel models can produce biased parameter estimates when 

there are high levels of multicollinearity (Can, van de Schoot, and Hox Forthcoming; Shieh and 

Fouladi 2003). 
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collinearity.” It is no more appropriate to question its statistical significance 

because there is multi-collinearity than to question a statistically significant 

relationship (at a specified level) because the variance explained by the model is 

low. 

Though rarely stated so explicitly, O’Brien’s perspective seems to be implicitly accepted among 

nearly all methods sources writing about multicollinearity. This apparent consensus does not 

extend to all applied researchers; in fact, the impetus for O’Brien’s piece seems to be the 

prevalence of the belief that multicollinearity is a problem even if results are significant.3 

A number of suggestions have been offered regarding how one should deal with data 

exhibiting high levels of multicollinearity. Virtually all of the approaches offered are aimed at 

increasing the precision of coefficient estimates. Standard suggestions include collecting 

additional data, altering model specification (dropping a variable, transforming data), 

reconsidering theoretical arguments, restricting parameters based on nonsample information 

(theory or prior findings), reducing the number of predictors by combining variables into indexes 

(e.g., through factor analysis), or using special techniques like ridge regression or principal 

components regression (Greene 2012, 91; Gujarati and Porter 2009, 342-346; Hill and Adkins 

2001). Unfortunately, all of the available statistical solutions risk introducing bias into 

coefficient estimates; adjustments to specification risk introducing omitted variable bias or 

                                                 
3 The prevalence of this belief among applied researchers despite an apparent consensus among 

methods sources that the belief is wrong may be due to the fact that many methods sources never 

explicitly state that multicollinearity isn’t a problem if results are significant. This frequent 

omission is perhaps itself another impetus for O’Brien’s piece. 
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specification error while ridge regression and principal components regression are known to be 

biased estimators (Hill and Adkins 2001; O’Brien 2007). 

Since the methods literature does not generally view multicollinearity as a problem when 

one is satisfied with the level of precision in the coefficient estimates (as in the case where one 

finds a significant relationship in a hypothesis test), there is very little explicit discussion of what 

should be done in such cases. Gujarati and Porter (2009, 342) explain that one reasonable 

response to multicollinearity is to simply “do nothing” and learn what one can from the 

regression results. Similarly, O’Brien (2007, 681) states that, “Even with VIF values that greatly 

exceed the rules of 4 or 10, one can often confidently draw conclusions from regression analyses. 

How confident one can be depends upon the t-values and/or confidence intervals, which the 

variance of the regression coefficients help generate.” 

Though the existing literature is certainly correct to point out that multicollinearity 

violates no regression assumption, it is not enough to simply understand the behavior of our 

models when assumptions are perfectly met. Discussions of multicollinearity have generally 

neglected to consider whether multicollinearity might act to either mitigate or exacerbate 

problems caused by common violations of regression assumptions. In the following two sections, 

I consider the effect of multicollinearity within the context of two violations: model 

misspecification and measurement error. 

Nonlinear Relationships and Model Misspecification 

It is widely known that omitting an important independent variable that is correlated with 

a predictor that is included in the regression will cause omitted variable bias. However, little 

attention in political science or economics has been paid to the bias that may be introduced in 

models where one nonlinear term (e.g., an interaction) is included but other potential nonlinear 
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terms (e.g., squared terms) that are correlated with the included term are omitted from the 

regression. While largely ignored within political science, this issue has been discussed in some 

detail by a few studies published in psychology and management journals (Cortina 1993; 

Ganzach 1997, 1998; MacCallum and Mar 1995). These studies caution researchers of the 

potential bias that can plague the estimation of an interaction effect between two correlated 

variables if the variables exhibit unmodeled direct curvilinear effects. This bias results because 

“when the correlation between X and Z increases so does the correlation between XZ and X2, 

which results in an overlap between the variance explained by XZ and the variance explained by 

X2” (Ganzach 1997, 236). Just as failing to control for some variable 𝑥𝟐 that may reasonably be 

expected to affect the dependent variable risks biasing estimates for the main predictor 𝑥1 if 𝑥𝟐 is 

correlated with 𝑥1, failing to control for other nonlinear effects (squared or interaction terms) that 

may reasonably be expected to exist risks biasing estimates for a nonlinear relationship of 

interest (𝑥1𝑥𝟐, 𝑥1
2, or 𝑥𝟐

2) if relevant predictors (𝑥1 and 𝑥𝟐) are correlated. Given the complex 

nature of social phenomena, there is good reason to believe that curvilinear and interactive 

relationships abound for many variables of interest to political scientists.  

Of course, including variables that are not part of the true regression model makes it more 

difficult to obtain precise estimates, though it does not bias results. When variables that may be 

unnecessary are highly correlated with other independent variables, including them in the 

regression risks interfering with one’s ability to find significance for variables that are truly 

related to the outcome. Ganzach (1998, 621) uses simulation results to argue that “in most of the 

situations which are encountered by researchers in management, adding quadratic terms does not 

result in a considerable increase in the probability of type II error in detecting interaction if the 

true regression equation does not include quadratic terms.” More specifically, he finds that 
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“[o]nly when multicollinearity is very high (i.e., [correlation] above .7), does the addition of 

quadratic terms have a substantial impact on the probability of type II error” (619). 

Table 1 reports the results of a set of Monte Carlo simulations that demonstrate the 

biasing effect that misspecification of nonlinear effects can have when predictors are correlated. 

5,000 samples were randomly generated for each of 20 sets of parameters. The 20 conditions 

varied in terms of the true regression equation (ether a curvilinear quadratic or an interactive 

model), the correlation between the two predictors (0, .3, .6,. .9, .95), and the sample size (50, 

500).4 When the true regression equation contains a curvilinear effect for one out of two 

predictors (𝑦 = 𝑥1 + 𝑥2 + 𝑥1
𝟐 + 𝜀), running an interactive model with no squared terms (𝑦 =

𝜷𝟏𝑥1 + 𝜷𝟐𝑥2 + 𝜷𝟓𝑥1𝑥2 + 𝜀) can produce a substantial number of false positives. When the two 

predictors are uncorrelated, false positives at the .05 level (two-tailed tests) for the interactive 

term occur 24.8% of the time in small samples (50 observations) and 29.2% of the time in large 

samples (500 observations). If the predictors are correlated at .3, the false positive rates increase 

to 55.6% and 99.9%. At correlations of .6 and higher, false positive rates are at 94.5% or higher. 

Just as an unmodeled curvilinear relationship can bias estimates for an interactive effect, 

an unmolded interaction can bias estimates of a curvilinear effect. Estimating a curvilinear model 

without any interaction term (𝒚 = 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟏
𝟐 + 𝜀) when the true model is interactive (𝒚 =

                                                 
4 𝒙𝟏 and 𝜺 were independently drawn from a standard normal distribution. 𝒙𝟐 was computed as 

𝝆 ∗ 𝒙𝟏 + √𝟏 − 𝒓𝟐 ∗ 𝒗, where 𝝆 is the correlation between 𝒙𝟏 and 𝒙𝟐 selected for that set of 

samples and 𝒗 is drawn from an independent normal distribution with a mean of zero and a 

variance of one. Thus, 𝒙𝟐 has a mean of zero, a variance of one, and an expected correlation of 𝒓 

with 𝒙𝟏. 
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𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝟓𝒙𝟏𝒙𝟐 + 𝜀) produces false positives at rate that is alarming but still slightly 

lower than in the reverse situation. 19.2% of small samples and 26.1% of large samples produced 

false positives for the squared term when the predictors were uncorrelated. Correlation at the .3 

level causes false positive rates of 49.9% for small samples and 99.7% for large samples. False 

positive rates exceed 90% whenever predictors are correlated at .6 or higher. 

The problem of false positives can be eliminated by running an overspecified model that 

includes both curvilinear quadratic terms and an interaction term (𝑦 = 𝜷𝟏𝑥1 + 𝜷𝟐𝑥2 + 𝜷𝟑𝑥1
𝟐 +

𝜷𝟒𝑥2
𝟐 + 𝜷𝟓𝑥1𝑥2 + 𝜀). The rate of false positives drops down to 5% regardless of the parameters 

chosen. The overspecified model also does a fairly good job of correctly identifying the 

nonlinear relationship present in the true regression equation. When the true model has a 

curvilinear quadratic term for one of the predictors, the term is correctly identified as positive 

and significant at least 98.7% of the time in small samples if the predictors are correlated at .6 or 

less. When the predictors have a correlated of .9, this rate drops down to 36.1% for small 

samples. In large samples, the coefficient for the correct quadratic term is identified as positive 

and significant in virtually every sample when the predictors are correlated at .9 or less and 

85.5% of the time when predictors are correlated at .95. If the true regression equation has only 

an interactive term, the nonlinear effect is somewhat more difficult to detect. When predictors 

have a correlation of .3 or less, the correct term has a positive and significant relationship 98.5% 

of the time or more in both small and large samples. At .6 correlation, the small sample produces 

a positive and significant coefficient 85.7% of the time while the large sample does so 100% of 

the time. A correlation of .9 brings the rate for small samples down to 13.4%, but large samples 

still yield a positive, significant relationship 86.5% of the time. A correlation of .95, however, 

brings the rate for large samples down to 35.7% 
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The decision of how many nonlinear terms to include in a model requires weighing a 

tradeoff between the risk of type I and type II errors. Including terms that are not needed in the 

model will increase the risk of type II errors (null results). The risk of type II errors is 

particularly strong for interactive terms and when samples are small. The rate of type II errors 

also increases dramatically as the correlation between predictors becomes stronger. 

Unfortunately, the risk of type I errors (false positives) when a model is misspecified is also 

strongest when predictors are most strongly correlated. If quadratic or interaction terms that are 

part of the true regression equation are omitted, false positives on the nonlinear terms are very 

likely even at relatively low levels of correlation between the predictors (.3). Large samples 

increase the likelihood of false positives when the model is misspecified, and interactive terms 

appear to be slightly more vulnerable than squared terms to type I errors. In some cases, theory 

may justify the assumption that direct effects are strictly linear for one or both variables (or that 

no interaction is present), reducing the number of terms that need to be included.   

Measurement Error in Predictors 

A large literature has developed around the problem of measurement error and offers a 

variety of models to correct for measurement error (see Buonaccorsi 2010). Familiar to many 

political scientists may be the structural equation modeling (SEM) approach which dominates the 

field of psychology. Unfortunately, techniques used to correct for measurement error require 

information on how precisely each variables is measured (or multiple measures of a construct 

which allow one to derive estimates of how reliably the construct has been measured). In many 

applications, such information is simply not available to researchers, making measurement error 

models of limited use. 
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Estimating a regression with data that imperfectly measure one or more of the 

independent variables found in the true regression equation constitutes a violation of standard 

regression assumptions and often has severe consequences. Though some applied scholars 

believe that measurement error will only serve to attenuate relationships, even completely 

uncorrelated measurement error can actually bias coefficient estimates away from zero in a 

multiple regression setting (Jackman 2008; McAdams 1986). 

Measurement error can be represented mathematically with the following equation: 

𝒘 = 𝒙 + 𝒖 

where 𝒘 is a proxy measure for 𝒙 and 𝒖 is the measurement error. A particularly simple type of 

measurement error can be considered by imposing the assumption that the error is unrelated to 

the true value of the variable: 

𝐸(𝒖|𝒙) = 𝟎 

Suppose one has the regression equation 

𝒚 = 𝛽1𝒙𝟏 + 𝜷𝟐𝑋2 + 𝜺 

where 𝒚 is a vector of values for the dependent variable, 𝒙𝟏 is a vector of values of a predictor 

that cannot be measured, 𝑋2 is a matrix of other predictors (that are perfectly measured), 𝜺 is a 

vector containing the error term, 𝛽1 is a scalar representing a regression coefficient, and 𝜷𝟐 is a 

vector of coefficients. This regression equation is then estimated as  

𝒚 = 𝛽1̂𝒘𝟏 + 𝜷𝟐̂𝑋2 + 𝜺̂ 

because only a proxy measure 𝒘𝟏 is available for 𝒙𝟏. Furthermore, it is assumed that 𝒘𝟏 exhibits 

what I refer to as uncorrelated measurement error, meaning that the measurement error is 

independent of all predictors and other error terms: 

𝒘𝟏 = 𝒙𝟏 + 𝒖𝟏 
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𝐸(𝒖𝟏|𝒙𝟏, 𝑋2, 𝜺) = 𝟎 

Since only one predictor is measured with error, the estimated coefficient for the 

imperfectly measured predictor (𝛽1̂) will be biased towards zero. Thus, the measurement error 

will not cause any risk of false positives in a test of statistical significance for the imperfectly 

measured variable (𝒙𝟏). However, the same cannot be said for the other (perfectly measured) 

independent variables. Because the model cannot fully control for the imperfectly measured 

variable (𝒙𝟏), some of the variance attributable to that variable may be misattributed to other 

predictors (𝑋2). As such, the estimates contained in 𝜷𝟐̂ may be biased either towards or away 

from zero, depending upon signs of 𝛽1 and 𝜷𝟐 and the patterns of covariance among the 

predictors (Achen 1983; Buonaccorsi 2010, 112-113). Once one moves beyond the world of one 

imperfectly measured predictor, generalizing becomes increasingly difficult. With multiple 

imperfectly measured predictors, the coefficients for all predictors (including those that are 

measured imperfectly) can be either inflated or attenuated (Achen 1983). 

In the measurement error literature, multicollinearity is occasionally referred to as one 

determinant of the severity of bias problems associated with measurement error. Buonaccorsi 

(2010, 112) notes that under assumptions similar to those used in the prior two paragraphs 

(except that multiple predictors can be measured imperfectly), predictors that are perfectly 

measured will have unbiased coefficient estimates if the perfectly measured variables are 

uncorrelated with the imperfectly measured variables. Operating under similar assumptions, 

Achen (1983, emphasis in original) briefly mentions that “high collinearity will induce relatively 

large asymptotic biases, no matter how small the measurement error variance.” In the case 

correlated measurement errors, Achen (1985) shows that correlation between predictors with 
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correlated measurement errors can cause serious bias, potentially reversing the sign of the 

coefficient for one of the predictors. 

Despite these occasional explicit references to multicollinearity in the measurement error 

literature, I have come across only one mention of measurement error in the multicollinearity 

literature. In an article on multicollinearity published in animal behavior journal, Freckleton 

(2011) examines the effects of measurement error by simulating data for a regression on two 

predictors, one of which is measured with error. The measurement error causes bias in the 

coefficient estimates, and he observes that: “The effects of this bias become extremely important 

when collinearity between the variables exists…. What is happening is that the measurement 

error in x2 results in under-estimation in the effect of this variable and, as the collinearity 

between the predictor increases, the effect of x2 is mis-attributed to x1” (97). 

I conduct a set of Monte Carlo simulations that build on the insights provided by the 

measurement error literature in order to better understand the bias caused by measurement error 

given various levels of multicollinearity. Specifically, I wish to determine the rate of false 

positives under various conditions for a predictor that is not included in the true regression 

equation when there are several predictors included in the model. For all conditions, the true 

regression equation is  

𝒚 = 𝒙2 + 𝒙3 − 𝒙4 + 𝜺 

which is estimated (using OLS) with proxy measures of the predictors as  

𝒚 = 𝛽0̂ + 𝛽1̂𝒙1 + 𝛽2̂𝒘2 + 𝛽3̂𝒘3 + 𝛽4̂𝒘4 + 𝛽5̂𝒙5 + 𝜺̂ 

where 

𝒘𝑖 = 𝒙𝑖 + 𝜏𝑖,𝑝 (1 − 𝜏𝑖,𝑝)⁄ 𝒖𝑖 ∀ 𝑖 ∈ {2,3,4}, 𝑝 ∈ 𝑃 
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𝜺 and all 𝒖𝑖 are error terms independently drawn from a standard normal distribution, and 𝜏𝑖,𝑝 is 

the simulation parameter indicating the proportion of variance in proxy measure 𝒘𝑖 attributable 

to measurement error under simulation parameter set 𝑝 ∈ 𝑃. 5000 samples were randomly 

created for each set of simulations parameters. The conditions vary in terms of sample size (50, 

500) and the proportion of variance in the proxy measures of the predictors that is attributable to 

measurement error (0, .01, .05, .1, .25). Since 𝒙𝟏 and 𝒙𝟓 are unrelated to the dependent variable, 

adding measurement error to them should have no effect on the simulation results. After all, 

adding white noise to white noise only creates whites noise with wider variance. 

The independent variables (𝒙𝑖) each have a mean of zero and a variance of one, and they 

are drawn with expected covariance patterns that are randomly determined separately for each 

sample. Specifically, five latent variables were independently drawn from a standard normal 

distribution. Then, twenty-five linking variables (corresponding to each combination of an 

independent variable and a latent variable) were created by taking the absolute value of an 

independent draw from the standard normal distribution. For each independent variable, five of 

the linking variables were summed, and then each of these five linking variables was converted 

to a proportion of the sum. The five proportions determined the proportion of variance in the 

independent variable that was attributable to each of the five latent variables. Each independent 

variable was then created by summing the five latent variables, with each latent variable 

weighted by the square root of the corresponding proportion and multiplied by a -1 if a random 

draw from a Bernoulli distribution (p=.5) produced a zero. This process produces bivariate 

correlations among the proxy predictors in the various samples that have a mean of zero and a 

variance of approximately .43. 



15 

 

Since expected patterns of covariance among the predictors were determined randomly, 

multicollinearity varies continuously and randomly throughout the samples generated under each 

set of simulation parameters. Thus, results cannot be easily summarized without estimating a 

model to fit the continuous variation in levels of multicollinearity. For each set of simulation 

parameters, I use logistic regression to predict the probability of obtaining a false positive result 

(significant coefficient) at the .05 alpha level (using a two-tailed t-test). I model the probability 

of a false positive as a function of the level of multicollinearity in the data (measured as a VIF, 

explained more below) with polynomial terms going up to a fifth-order polynomial in order to 

allow for curvilinear effects. Because of some extreme values of the VIF that led to unreasonable 

estimates from the logistic regression models or prevented model convergence, I only include 

observations (results from simulation samples) with a VIF smaller than 20 in the logistic 

regression models. 

I measure multicollinearity by computing the VIF for the predictor of interest (𝒙1) in the 

regression model that is estimated in each sample. The VIF is computed using the proxy 

measures of the imperfectly measured variables rather than the true values of the predictors 

because applied researchers will only be able to compute a VIF for the variables they have access 

to, not for the true values of variables for which they are using proxies in a regression. The 

inclusion of a second variable that is not part of the true regression equation (𝒙5) adds further 

noise to the VIF measure, but this is likely to mirror many applied settings in which researchers 

may include extra variables which may have no real impact on the dependent variable in order to 

minimize the risk of omitted variable bias. In sum, it is useful to examine how much a measure 

that applied researchers will be able to readily compute can tell them about the likelihood of 

measurement error causing serious problems in their models. 
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Figure 1 shows the simulation results for several sets of parameters, all of which produce 

small samples (50 observations). The figure depicts the predicted probably of a false positive (at 

the .05 level) based on the results of logistic regression models. The x-axis shows the level of 

multicollinearity, measures as the observed VIF for 𝒙1—the main predictor of interest (which 

has a coefficient of zero in the true regression equation). The different lines correspond to sets of 

samples that have different levels of measurement error for the observed values of the three 

variables (𝒙𝟐, 𝒙𝟑, and 𝒙4) that have a true effect on the dependent variable. It is worth noting that 

random measurement error and multicollinearity are generally negatively related since random 

measurement error always serves to attenuate bivariate relationships in expectation. For this 

reason, high levels of observed multicollinearity should be rare in practice when data have high 

levels of random measurement error. 

When there is no measurement error or when measurement error makes up only 1% of 

the variance in the proxy measures, the rate of false positives in small samples stays more or less 

constant at 5%, regardless of the level of multicollinearity. When measurement error increases to 

5% of the variance in the proxy measures, a slight upward trend becomes apparent in the figure. 

When there is no multicollinearity (VIF=1), it appears that false positives occur only 5% of the 

time. But samples with higher VIFs for 𝒙𝟏 more frequently yield regression results that 

incorrectly find that 𝒙𝟏 is significant. This positive relationship appears to taper off around a VIF 

of 6, at which point false positives appear to occur at a rate of approximately 15% and higher 

levels of multicollinearity do not appear to increase this probability. A similar pattern is found 

when measurement error is at 10% except that rates of false positives are greater, with the 

maximum rate probably hitting over 20%. Rates of false positives are much greater when 

measurement errors make up 25% of the variation in the proxy measures. Even with no 
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multicollinearity, false positive rates appear to be greater than 15%. The false positive rate then 

hits a maximum just above 40% when the VIF is at 4. Such high rates of type I errors are 

alarming and suggest that high levels of measurement error (25% or greater) are problematic, 

even in small samples and even when there is no multicollinearity (although multicollinearity 

certainly worsens the problem). 

Figure 2 shows results for parameter settings identical to figure 1 except that the sample 

size is changed to 500. The most obvious difference is that rates of false positives get much 

larger with large samples. Unlike many other statistical problems, concerns related to 

measurement error often are worse in large samples. Given measurement error of 1%, type I 

error rates appear to increase monotonically as the VIF increases, starting at a 5% rate (VIF=1) 

and reaching close to 20% (VIF=10). This suggests that in large samples, even very tiny amounts 

of measurement error can be problematic when multicollinearity is excessive. Measurement error 

of 5% raises the rate of false positives to about 15% when there is no multicollinearity and 50% 

at a VIF of 5, after which there is not a dramatic increase as multicollinearity increases. The 

pattern is similar but somewhat more severe when measurement error accounts for 10% of the 

variance in the proxy measures. At 25% measurement error, the rate of type I errors approaches 

50% even when there is no multicollinearity present. This alarming rate casts serious doubt on 

whether meaningful hypothesis tests can be obtained from OLS regression when measures of key 

variables contain such large errors (in large samples). 

In figure 3, I examine whether or not containment of measurement errors to a single key 

variable substantially lessens the risk of false positives. The solid line reports results for samples 

where all three true predictors contain measurement error (which comprises 10% of each of their 

variances) while the dashed line shows results for samples where only one variable (𝒙𝟐) contains 
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measurement error (again with measurement error of 10%). While rates of false positives are 

consistently lower when only one variable contains errors, the difference between the two lines is 

very slight. Rates of false positives are only marginally lower when measurement error is 

contained to a single predictor. 

Finally, in figure 4 I use an alternative measure of multicollinearity. Rather than 

examining the VIF for 𝒙1, I examine type I error rates across varying values of the bivariate 

correlation between 𝒙1 and 𝒘2 (the proxy measure for 𝒙2) when 𝒙2 is the only variable 

measured with error. When only one variable contains error, one might think that the bivariate 

correlation with the imperfectly measured variable would be a better indicator of false positives 

than the VIF since the VIF is affected by correlations with other variables that are perfectly 

measured. Comparing to the dashed line in figure 3 (which uses the VIF to predict type II errors 

in the same set of simulation samples), one can see that the rate of false positives is much higher 

when the bivariate correlation is 0 (~50%) than when the VIF is 1 (~20%). This implies that a 

low bivariate correlation is not sufficient to conclude that multicollinearity is not exacerbating a 

measurement error bias; complex covariance patterns can cause bias in the estimates for 𝒙1 even 

if 𝒙1 is uncorrelated at a bivariate level with the variable measured with error (𝒘2). In contrast, a 

very low VIF (closer to 1 than to 2) appears to be a reliable indicator that multicollinearity is not 

worsening a measurement error problem. A very strong bivariate correlation (.9) with the poorly 

measured variable does, however, appear to be a stronger indication of a near-absolute false 

positive than a high VIF (10). 

Guidelines for Applied Researchers 

What should applied researchers do if they find high levels of multicollinearity as they 

are running regressions? The answer may depend on whether results are significant or not. If 
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significant results are found, then multicollinearity may offer reason for pause. First, if there are 

nonlinear terms (squared or interaction terms) of substantive interest, researchers might want to 

consider adding other nonlinear terms to the regression equation. Omitting a necessary nonlinear 

term is particularly problematic if (1) two variables are being interacted and they are reasonably 

correlated with one another (.3 or greater in large samples) or (2) a variables that has been 

squared is reasonably correlated with another variable with which it could be interacted. The 

safest bet for avoiding false positives is to include an interaction term for the correlated variables 

as well as a squared term for each of the correlated variables. However, adding unnecessary 

variables reduces statistical power. If adding additional nonlinear terms dramatically widens 

standard errors and makes it difficult to draw inferences, a judgment must be made about how 

important it is to include the originally omitted terms. 

One can choose to assume that one or more nonlinear terms does not affect the dependent 

variable, perhaps guided by theoretical reasoning suggesting the absence of a curvilinear 

relationship or of an interaction. Imposing a statistical assumption based on a theory means that 

the researcher is choosing not to test that aspect of the theory. For example, a researcher who 

decides to omit squared terms when testing an interaction between two moderately correlated 

variables is choosing to impose (rather than test) the theoretical assumption that direct effects are 

strictly linear. The researcher can still test whether the estimate for the interaction conforms to 

theoretical expectations given that another aspect of the theory is assumed to be true. The results 

will allow the researcher to say something like “if the direct effects are truly linear as the theory 

assumes, these results suggest that…” This limited test can still be a valuable contribution; no 

empirical test is perfect or can test all aspects of a complex theory. But a researcher who has 

enough data to obtain precise estimates for both squared and interaction terms can test two 
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theoretical claims simultaneously: they can determine whether direct effects appear to be truly 

linear and whether the interaction conforms to expectations. 

A second question for researchers to ask if they find significant results with high levels of 

multicollinearity is whether there might be measurement error in one or more of their 

independent variables. Even if it is only one important control variable that is poorly measured, 

this can seriously bias estimates of the variables of interest, particularly if there are reasonably 

high levels of multicollinearity (VIF of 4 or greater). If measurement error is severe 

(measurement error accounts for 25% or more of the variance in the proxy measure), results may 

be untrustworthy even in the absence of multicollinearity. At lower levels of measurement error, 

however, problems are much less likely to arise when there is very little multicollinearity. 

If measurement error is a concern, one potential solution is to guess what proportion of 

variance is due to measurement error for any variables that likely contain error. For simple linear 

regressions, measurement error models can then be easily run in standard statistical packages like 

Stata, and users can see how the results are affected. One can try inputting various levels of 

measurement error in order to see how sensitive a finding is to various guesses about the degree 

of measurement error for a variable or set of variables. 

If multicollinearity is found and results are insignificant, two general ideas can guide 

researchers as they interpret results and ponder whether to run different models. Both are good 

general practices but are especially important when dealing with data with multicollinearity. 

First, null (insignificant) results should not be interpreted as evidence of no effect. Since 

multicollinearity generally produces wide confidence intervals (large standard errors), 

insignificant results often do not allow one to conclude that the true value of the coefficient is 

close to zero. Of course, one can simply look at the confidence intervals to see whether this is the 
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case for a particular set of results. Researchers who have some sense of the scale of their 

variables should be able to make intelligent statements about whether the confidence intervals 

rule out the possibility of a substantively meaningful impact. Another useful tool in some 

situations may be to run joint significance tests. These may allow one to make claims about a set 

of variables have an effect in concert even if individual coefficients are not significant. For 

example, suppose one has measures of ideology and partisanship which are highly correlated. If 

large standard errors make it impossible to draw meaningful substantive results from the 

individual coefficients, one might still be interested in whether or not the variables are jointly 

significant. Joint significance would indicate that partisanship or ideology or both are significant 

determinants of the dependent variable, which is not a terribly specific conclusion but may still 

be useful for some purposes. If one is wanting to draw conclusions about whether some outcome 

is determined primarily by broad political ideas or by preferences for specific policies, the joint 

significant test results may be adequate. 

Second, multiple regression (including OLS) provides estimates of the independent 

effects of variables. In other words, a coefficient estimate for variable X indicates the expected 

change in the dependent variable if X changes and all other independent variables are held 

constant. If high levels of multicollinearity result from variables that are so intertwined with one 

another that it makes little sense to think about one changing while the other(s) is (are) held 

constant, the individual coefficient estimates will be difficult to interpret. In some cases, 

multicollinearity may result because one has included multiple measures of the same concept in a 

regression or because one has included mediating variables in a regression. Insignificant results 

due to multicollinearity can sometimes serve as a reminder to make sure that one really wants to 
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test for the effect of some predictor independent of another one with which it is highly 

correlated.  
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Table 1. Simulations for Nonlinear Models 

  

True equation: quadratic curvilinear 

𝒚 = 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟏
𝟐 + 𝜺 

True equation: interactive 

𝒚 = 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟏𝒙𝟐 + 𝜺 

  

Misspecified model: 

𝒚
= 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐

+ 𝜷𝟓𝒙𝟏𝒙𝟐 + 𝜺 

Overspecified model: 

𝒚 = 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝟑𝒙𝟏
𝟐

+ 𝜷𝟒𝒙𝟐
𝟐

+ 𝜷𝟓𝒙𝟏𝒙𝟐

+ 𝜺 

Misspecified model: 

𝒚
= 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐

+ 𝜷𝟑𝒙𝟏
𝟐 + 𝜺 

Overspecified model: 

𝒚 = 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝟑𝒙𝟏
𝟐

+ 𝜷𝟒𝒙𝟐
𝟐

+ 𝜷𝟓𝒙𝟏𝒙𝟐

+ 𝜺 

N Corr(𝒙𝟏, 𝒙𝟐) 𝜷𝟓: false positives 

𝜷𝟓: false 

positives 

𝜷𝟑: positive 

& significant 𝜷𝟑: false positives 

𝜷𝟑: false 

positives 

𝜷𝟓: positive 

& significant 

50 0 24.8% 5.3% 99.9% 19.2% 4.9% 99.7% 

50 .3 55.6% 4.7% 100.0% 49.9% 4.5% 98.5% 

50 .6 94.5% 4.9% 98.7% 91.4% 5.0% 85.7% 

50 .9 99.9% 4.7% 36.1% 99.8% 4.8% 13.4% 

50 .95 99.9% 4.8% 13.3% 99.9% 4.9%  6.4% 

500 0 29.2% 4.8% 100% 26.1% 5.0% 100% 

500 .3 99.9% 5.0% 100% 99.7% 5.1% 100% 

500 .6 100% 4.5% 100% 100% 5.0% 100% 

500 .9 100% 5.0% 99.9% 100% 4.7% 86.5% 

500 .95 100% 4.9% 85.5% 100% 5.1% 35.7% 

Notes: 

5,000 datasets were randomly generated for each set of parameters, and all models estimated used OLS regression. 

𝒙𝟏, 𝒙𝟐, and 𝜺 were each independently drawn from a standard normal distribution (mean=0, variance=1). 

Two-way tests of significance were conducted with an alpha level of .05 (null: 𝜷𝒊 = 𝟎).
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Figure 1. Small Sample Simulations with Measurement Error in Controls 
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Figure 2. Large Sample Simulations with Measurement Error in Controls 
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Figure 3. Simulations with Measurement Error in One versus Multiple Controls 
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Figure 4. Simulations with Multicollinearity Measured Through Bivariate Correlation 
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